Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Soua, Basma Borgi, Amel Tagina, Moncef |
| Copyright Year | 2012 |
| Abstract | Fuzzy rule-based classification systems are very useful tools in the field of machine learning as they are able to build linguistic comprehensible models. However, these systems suffer from exponential rule explosion when the number of variables increases, degrading, therefore, the accuracy of these systems as well as their interpretability. In this article, we propose to improve the comprehensibility through a supervised learning method by automatic generation of fuzzy classification rules, designated SIFCO–PAF. Our method reduces the complexity by decreasing the number of rules and of antecedent conditions, making it thus adapted to the representation and the prediction of rather high-dimensional pattern classification problems. We perform, firstly, an ensemble methodology by combining a set of simple classification models. Subsequently, each model uses a subset of the initial attributes: In this case, we propose to regroup the attributes using linear correlation search among the training set elements. Secondly, we implement an optimal fuzzy partition thanks to supervised discretization followed by an automatic membership functions construction. The SIFCO–PAF method, analyzed experimentally on various data sets, guarantees an important reduction in the number of rules and of antecedents without deteriorating the classification rates, on the contrary accuracy is even improved. |
| Starting Page | 385 |
| Ending Page | 410 |
| Page Count | 26 |
| File Format | |
| ISSN | 02191377 |
| Journal | Knowledge and Information Systems |
| Volume Number | 36 |
| Issue Number | 2 |
| e-ISSN | 02193116 |
| Language | English |
| Publisher | Springer London |
| Publisher Date | 2012-09-15 |
| Publisher Place | London |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Fuzzy rule-based classification systems Supervised learning Automatic generation of fuzzy rules Feature subset ensemble methodology Attributes regrouping Fuzzy supervised partition Information Systems and Communication Service Business Information Systems |
| Content Type | Text |
| Resource Type | Article |
| Subject | Artificial Intelligence Information Systems Human-Computer Interaction Hardware and Architecture Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|