Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Gava, P. Dal Corso, A. Smoguv, A. Tosatti, E. |
| Copyright Year | 2010 |
| Abstract | We present first-principles calculations of the effects of magnetism on the ballistic conductance of a model Pd nanocontact, made of a short Pd monatomic stretched chain placed between two Pd leads, simulated by semi-infinite (100) slabs. The stretching makes the suspended Pd chain generally ferromagnetic. The spin-resolved ballistic conductance, calculated according to the Landauer-Büttiker formula is found to be 0.85G0 for the spin-up and 1.15G0 for the spin-down electrons (G0 = 2e2/h is the conductance quantum). The total conductance ~2G0 is lower, but still relatively close to that of the nonmagnetic Pd nanocontact with the same geometry, calculated to be 2.3G0. To illustrate how magnetism and conductance depend on structural details, we change the three atom chain docking from the top to a hollow surface site, where at the same stress the Pd contact is nonmagnetic and the conductance decreases to 1.8G0. Overall we find these calculated ballistic conductance values of very similar magnitude to the first histogram peak in the experimental data obtained for Pd at low temperature in mechanically controllable break junctions. We conclude that the 15% conductance changes caused by the onset or the demise of local magnetism, similar in magnitude to geometry-related conductance changes, are probably too small to be used as a diagnostic for the presence or absence of nanocontact magnetism. |
| Starting Page | 57 |
| Ending Page | 64 |
| Page Count | 8 |
| File Format | |
| ISSN | 14346028 |
| Journal | The European Physical Journal B |
| Volume Number | 75 |
| Issue Number | 1 |
| e-ISSN | 14346036 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2010-02-02 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Solid State Physics Fluid- and Aerodynamics Statistical Physics, Dynamical Systems and Complexity Physics Condensed Matter Physics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electronic, Optical and Magnetic Materials Condensed Matter Physics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|