Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Dassargues, A. |
| Copyright Year | 1997 |
| Abstract | In order to accurately quantify the water flux entering the Netherlands from Belgium via the Meuse River and its alluvial plain, the Belgian Ministry of Public Works has supported hydrological and hydrogeological studies in the area between the city of Liège (Belgium) and the Dutch border. The groundwater fluxes from the Albert Canal to the Meuse River and those passing around the weir-lock systems within the alluvial gravel deposits are not measured by the existing surface-water gauging system; therefore, detailed quantitative hydrogeological studies of the groundwater fluxes in these alluvial deposits were needed.A detailed three-dimensional finite-element numerical model was used to compute these fluxes. Previous hydrogeological studies involving piezometers, pumped wells, and electrical soundings provided, respectively, data for potentiometric maps, local values of hydraulic condictivity, and more than 200 measurements of the apparent geoelectrical resistivity of the gravel deposits. From this data set, a new correlation between geoelectrical resistivity and hydraulic conductivity was used to define a spatially distributed set of hydraulic-conductivity values to be entered in the model.Maps and measured potentiometric heads were used as references for the calibration of the model, and features of the model, such as layer geometry, external sink and source terms, and boundary conditions, were selected on the basis of all available information. Four non-horizontal layers were discretized as 2,356 elements.On the basis of the model, the additional flow crossing to the Netherlands via the alluvial aquifer and the Meuse River is about 5.4 $^{3}$/s during the summer. Afin de quantifier avec précision le flux d'eau entrant aux Pays-Bas depuis la Belgique, par la Meuse et sa nappe alluviale, le Ministère belge des Travaux Publics a financé des études hydrologiques et hydrogéologiques dans la région de Liège (Belgique) et de la frontière néerlandaise. Les flux d'eau souterraine depuis le canal Albert vers la Meuse et ceux passant par les systèmes d'écluses dans les graviers des alluvions ne sont pas mesurés par le dispositif existant de jaugeage des eaux de surface; c'est pourquoi des études hydrogéologiques détaillées des flux souterrains dans ces nappes alluviales sont nécessaires.Un modèle numérique détaillé, en 3 D, aux éléments finis, y été utilisé pour calculer ces flux. De précédentes études hydrogéologiques, s'appuyant sur des piézomètres, des pompages et des sondages électriques avaient respectivement fourni les données pour des cartes piézométriques, des valeurs locales de la transmissivité et plus de 200 mesures de résistivité apparente des dépôts de graviers. Cet ensemble de données a permis d'établir une nouvelle corrélation entre la résistivitéélectrique et la transmissivité, dans le but de définir une distribution spatiale des valeurs de transmissivité nécessaires au modèle.Des cartes et des mesures de charges hydrauliques ont été utilisées comme références pour la calibration du modèle; certaines caractéristiques du modèle, comme la géométrie des couches, les termes puits et source externes et les conditons aux limites, ont été choisies sur la base des informations disponibles. Quatre couches non horizontales ont été discrétisées en 2356 éléments.Sur la base du modèle, le flux supplémentaire s'écoulant vers les Pays-Bas au travers de l'aquifère alluvial et de la Meuse est d'environ 5,4 m$^{3}$/s en été. Para cuantificar adecuadamente el flujo de agua que entra a Holanda desde Bélgica a través del Río Mosa y su llanura aluvial, el Ministerio de Obras Públicas de Bélgica ha financiado estudios hidrológicos e hidrogeológicos en el área comprendida entre la ciudad de Lieja (Bélgica) y la frontera holandesa. Los flujos de agua subterránea desde el Canal Alberto al Río Mosa, así como los que pasan por los depósitos de gravas aluviales, sin llegar a entrar en el sistema de canalizaciones, no pueden registrarse con el sistema de medición superficial existente; por tanto, se necesitaban estudios hidrogeológicos cuantitativos de detalle para caracterizar estos flujos.Se usó un modelo numérico tridimensional de elementos finitos para cuantificar estos flujos. Estudios previos, que incluían piezómetros, pozos de bombeo y prospección eléctrica proporcionaron, respectivamente, información sobre piezometría, valores locales de conductividad hidráulica y más de 200 medidas de la resistividad eléctrica aparente de los depósitos de gravas. A partir de esta base de datos, se usó una correlación entre los valores de resistividad eléctrica y conductividad hidráulica para definir la distribución espacial de los valores de conductividad hidráulica a usar en el modelo.Los mapas y las medidas de alturas piezométricas se usaron como referencia en la calibración del modelo, y algunas características del modelo, como la gemetría de las capas, fuentes y sumideros externos y condiciones de contorno, se seleccionaron a partir de toda la información disponible. Se discretizaron cuatro capas no horizontales, para un total de 2356 elementos.A partir de los resultados del modelo, el flujo adicional que cruza hacia Holanda a través del acuífero aluvial y el Río Mosa, se estima en alrededor de 5.4 m$^{3}$/s durante el verano. |
| Starting Page | 97 |
| Ending Page | 108 |
| Page Count | 12 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 5 |
| Issue Number | 3 |
| e-ISSN | 14350157 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2012-11-20 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Hydrogeology Geology Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|