Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Kurtulus, Bedri Razack, Moumtaz |
| Copyright Year | 2006 |
| Abstract | The ability of artificial neural networks (ANN) to model the rainfall-discharge relationships of karstic aquifers has been studied in the La Rochefoucauld karst system, south-west France, which supplies water to the city of Angoulême. A neural networks model was developed based on MLP (multi-layer perceptron) networks and the Levenberg-Marquardt optimization algorithm. Raw rainfall data were used without transformation into effective rainfall. This allowed for the elimination of certain non-verifiable simplifying assumptions and their subsequent introduction into the modeling procedure. The raw rainfall and discharge data were divided into three groups for the training, the validation and the prediction test of the ANN model. The training and validation phases led to a very satisfactory calibration of the ANN model. The attempt to predict discharges showed that the ANN model is able to simulate the karstic aquifer discharges. The shape of the simulated hydrographs was found to be similar to that of the actual hydrographs. These encouraging results make it possible to consider interesting and new prospects for the modeling of karstic aquifers, which are highly non-linear systems.L’aptitude des réseaux de neurones artificiels (RNA) à modéliser les relations pluie-débit des aquifères karstiques a été évaluée sur le karst de La Rochefoucauld (Sud-Ouest de la France), qui fournit l’eau potable à la capitale régionale Angoulême. Un modèle RNA a été développé à cet effet, basé sur les réseaux PMC (Perceptron Multicouche) et l’algorithme d’optimisation de Levenberg-Marquardt. Les données de pluie utilisées concernent la pluie brute, sans transformation en pluie efficace, ce qui permet de s’affranchir de certaines hypothèses simplificatrices non vérifiables. Les données de pluie brute et de débit ont été réparties en 3 groupes pour l’apprentissage, la validation et le test de prédiction du RNA. Les phases d’apprentissage et de validation ont permis d’aboutir à une calibration très satisfaisante du modèle RNA. La tentative de prédiction a montré que le RNA est apte à simuler les débits de l’aquifère karstique à partir de la pluie brute. La forme des hydrogrammes simulés est semblable à celle des hydrogrammes réels. Les résultats obtenus sont très encourageants et permettent d’envisager des perspectives intéressantes et nouvelles de modélisation des aquifères karstiques, qui sont des systèmes hautement non-linéaires.Se ha estudiado la capacidad de las redes artificiales neurales (ANN) para modelizar las relaciones de lluvia-descarga de acuíferos kársticos en el sistema kárstico La Rochefocauld, al suroeste de Francia, el cual abastece de agua a la ciudad de Angoulême. Se desarrolló un modelo de redes neurales en base a redes MLP (Perceptron Multi-Capas) y el algoritmo de optimización Levenberg-Marquardt. Se utilizaron datos de lluvia sin la transformación hacia lluvia efectiva. Esto permitió la eliminación de ciertos supuestos simplificadores no verificables y su subsiguiente introducción en el procedimiento de modelizado. Los datos brutos de descarga y lluvia se dividieron en 3 grupos para la preparación, validación y la prueba de predicción del modelo ANN. Las fases de preparación y validación llevaron a una calibración muy satisfactoria del modelo ANN. El intento por predecir descargas mostró que el modelo ANN es capaz de simular las descargas del acuífero kárstico. Se encontró que la forma de los hidrogramas sintéticos es similar a la de los hidrogramas reales. Estos resultados alentadores hacen posible considerar prospectos nuevos e interesantes para el modelizado de acuíferos kársticos los cuales son sistemas altamente no-lineares. |
| Starting Page | 241 |
| Ending Page | 254 |
| Page Count | 14 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 15 |
| Issue Number | 2 |
| e-ISSN | 14350157 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2006-09-23 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Artificial neural networks Karst Numerical modeling Non-linear system La Rochefoucauld aquifer Waste Water Technology Water Pollution Control Water Management Aquatic Pollution Geology Hydrogeology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|