Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Fletcher, Stephen |
| Copyright Year | 2007 |
| Abstract | We propose a new model for the elementary act of electron transfer between two species in solution. The central idea is that the solution in the immediate vicinity of each species may be represented by an equivalent circuit consisting of a Debye circuit shunted by a resistor. Based on this insight, we derive a new formula for the one-dimensional potential energy profile of a coupled donor–acceptor pair at finite (but large) separation d, along a charge-fluctuation reaction co-ordinate, at fixed radii of the transition states. The corresponding reorganisation energy of the reaction is also derived, and it is found to differ from that in the Marcus theory. In particular, the new model predicts that the reorganisation energy is independent of the static dielectric constant of the solution, whereas the old model predicts a strong dependence. The difference is traced to the fact that the Marcus theory omits consideration of the work required to form the charge fluctuations and focuses instead on the work required to localise the charge fluctuations. In general, the equivalent circuit approach permits many of the difficult-to-derive equations of non-equilibrium polarisation theory to be written down by inspection. |
| Starting Page | 965 |
| Ending Page | 969 |
| Page Count | 5 |
| File Format | |
| ISSN | 14328488 |
| Journal | Journal of Solid State Electrochemistry |
| Volume Number | 11 |
| Issue Number | 7 |
| e-ISSN | 14330768 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2007-04-18 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Marcus theory Electron transfer theory Reorganisation energy Equivalent circuit Electrostatic fluctuations Electronic and Computer Engineering Condensed Matter Characterization and Evaluation of Materials Industrial Chemistry/Chemical Engineering Analytical Chemistry Physical Chemistry |
| Content Type | Text |
| Resource Type | Article |
| Subject | Condensed Matter Physics Materials Science Electrical and Electronic Engineering Electrochemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|