Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Rubio Pereda, Pamela Takeuchi, boru |
| Copyright Year | 2016 |
| Abstract | Density functional theory with the addition of a semi-empirical dispersion potential was applied to the conventional Kohn–Sham energy to study the adsorption of alkene and alkyne molecules on hydrogen-terminated two-dimensional group IV systems (graphane, silicane, and germanane) by means of a radical-initiated reaction. In particular, we investigated the interactions of acetylene, ethylene, and styrene with those surfaces. Although we had studied these systems previously, we included van der Waals interactions in all of the cases examined in the present work. These forces, which are noncovalent interactions, can heavily influence different processes in molecular chemistry, such as the adsorption of organic molecules on semiconductor surfaces. This unified approach allowed us to perform a comparative study of the relative reactivities of the various organic molecule/surface systems. The results showed that the degree of covalency of the surface, the lattice size, and the partial charge distribution (caused by differences in electronegativity) are all key elements that determine the reactivity between the molecules and the surfaces tested in this work. The covalent nature of graphane gives rise to energetically favorable intermediate states, while the opposite polarities of the charge distributions of silicane and germanane with the organic molecules favor subsequent steps of the radical-initiated reaction. Finally, the lattice size is a factor that has important consequences due to steric effects present in the systems and the possibility of chain reaction continuation. The results obtained in this work show that careful selection of the substrate is very important. Calculated energy barriers, heats of adsorption, and optimized atomic structures show that the silicane system offers the best reactivity in organic functionalization. |
| Starting Page | 1 |
| Ending Page | 10 |
| Page Count | 10 |
| File Format | |
| ISSN | 16102940 |
| Journal | Journal of Molecular Modeling |
| Volume Number | 22 |
| Issue Number | 8 |
| e-ISSN | 09485023 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2016-07-06 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Organic functionalization Two-dimensional materials Radical-initiated reaction Hydrogen vacancy Computer Applications in Chemistry Molecular Medicine Computer Application in Life Sciences Characterization and Evaluation of Materials Theoretical and Computational Chemistry |
| Content Type | Text |
| Resource Type | Article |
| Subject | Organic Chemistry Physical and Theoretical Chemistry Computational Theory and Mathematics Catalysis Inorganic Chemistry Computer Science Applications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|