Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Lande, Aurélien Clavaguéra, Carine Köster, Andreas |
| Copyright Year | 2017 |
| Abstract | Population analyses are part of the theoretical chemist’s toolbox. They provide means to extract information about the repartition of the electronic density among molecules or solids. The values of atomic multipoles in a molecule can shed light on its electrostatic properties and may help to predict how different molecules could interact or to rationalize chemical reactivity for instance. Not being physical observables to which a quantum mechanical operator can be associated, atomic charges and higher order atomic multipoles cannot be defined unambiguously in a molecule, and therefore, several population schemes (PS) have been devised in the last decades. In the context of density functional theory (DFT), PS based on the electron density seem to be best grounded. In particular, some groups have proposed various iterative schemes the outcomes of which are very encouraging. Modern implementations of DFT that are for example based on density fitting techniques permit the investigation of molecular systems comprising of hundreds of atoms. However, population analyses following iterative schemes may become very CPU time consuming for such large systems. In this article, we investigate if the computationally less expensive analyses of the variationally fitted electronic densities can be safely carried out instead of the Kohn-Sham density. It is shown that as long as flexible auxiliary function sets including f and g functions are used, the multipoles extracted from the fitted densities are extremely close to those obtained from the KS density. We further assess if the multipoles obtained through the Hirshfeld’s approach, in its standard or iterative form, can be a useful approach to calculate interaction energies in non-covalent complexes. Relative energies computed with the AMOEBA polarizable forced field combined to iterative Hirshfeld multipoles are encouraging. |
| Starting Page | 1 |
| Ending Page | 12 |
| Page Count | 12 |
| File Format | |
| ISSN | 16102940 |
| Journal | Journal of Molecular Modeling |
| Volume Number | 23 |
| Issue Number | 4 |
| e-ISSN | 09485023 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2017-03-02 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | AMOEBA Charges deMon2k Density Fitting Hirshfeld Computer Applications in Chemistry Molecular Medicine Computer Application in Life Sciences Characterization and Evaluation of Materials Theoretical and Computational Chemistry |
| Content Type | Text |
| Resource Type | Article |
| Subject | Organic Chemistry Physical and Theoretical Chemistry Computational Theory and Mathematics Catalysis Inorganic Chemistry Computer Science Applications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|