Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Kashiwagi, Masashi Ten, Igor Yasunaga, Makoto |
| Copyright Year | 2006 |
| Abstract | A linearized two-dimensional diffraction problem in a two-layer fluid of finite depth was solved for a general floating body and relevant wave-induced motions were studied. In a two-layer fluid, for a prescribed frequency, incident waves propagate with two different wave modes. Thus the wave-exciting forces and resulting motions must be computed separately for each mode of the incident wave. The boundary integral equation method developed by the authors in the Part-1 article was applied to directly obtain the diffraction potential (pressure) on the body surface. With the computed results, an investigation was carried out on the effects of the fluid density ratio and the interface position on the wave-exciting forces on the body and the motions of the body, including the case in which the body intersects the interface. By a systematic derivation using Green's theorem, all the possible reciprocity relations were derived theoretically in explicit forms for a system of finite depth; these relations were confirmed to be satisfied numerically with very good accuracy. Experiments were also carried out using water and isoparaffin oil as the two fluids and a Lewis-form body. Measured results for the sway- and heave-exciting forces and the heave motion were compared with the computed results, and a favorable agreement was found. |
| Starting Page | 150 |
| Ending Page | 164 |
| Page Count | 15 |
| File Format | |
| ISSN | 09484280 |
| Journal | Journal of Marine Science and Technology |
| Volume Number | 11 |
| Issue Number | 3 |
| e-ISSN | 14378213 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2006-09-27 |
| Publisher Place | Tokyo |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Two-layer fluid Surface-wave mode Internal-wave mode Diffraction problem Wave-induced motions Finite water depth Engineering Fluid Dynamics Mechanical Engineering Engineering Design Automotive and Aerospace Engineering, Traffic Offshore Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Oceanography Ocean Engineering Mechanics of Materials Mechanical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|