Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Dorwski, W. Perzyna, P. |
| Copyright Year | 2002 |
| Abstract | The main objective of the paper is the investigation of localized fatigue fracture phenomena in thermo-viscoplastic flow processes under cyclic dynamic loadings. Recent experimental observations for cycle fatigue damage mechanics at high temperature and dynamic loadings of metals suggest that the intrinsic microdamage process does very much depend on the strain rate and the wave shape effects and is mostly developed in the regions where the plastic deformation is localized. The microdamage kinetics interacts with thermal and load changes to make failure of solids a highly rate, temperature and history dependent, nonlinear process.A general constitutive model of elasto-viscoplastic damaged polycrystalline solids developed within the thermodynamic framework of the rate type covariance structure with a finite set of the internal state variables is used (cf. Dornowski and Perzyna [16], [17], [18]). A set of the internal state variables is assumed and interpreted such that the theory developed takes account of the effects as follows: (i) plastic nonnormality; (ii) plastic strain induced anisotropy (kinematic hardening); (iii) softening generated by microdamage mechanisms (nucleation, growth and coalescence of microcracks); (iv) thermomechanical coupling (thermal plastic softening and thermal expansion); (v) rate sensitivity; (vi) plastic spin.To describe suitably the time and temperature dependent effects observed experimentally and the accumulation of the plastic deformation and damage during a dynamic cyclic loading process the kinetics of microdamage and the kinematic hardening law have been modified. The relaxation time is used as a regularization parameter. By assuming that the relaxation time tends to zero, the rate independent elasticplastic response can be obtained. The viscoplastic regularization procedure assures the stable integration algorithm by using the finite difference method. Particular attention is focussed on the well-posedness of the evolution problem (the initial-boundary value problem) as well as on its numerical solutions. The Lax-Richtmyer equivalence theorem is formulated, and conditions under which this theory is valid are examined. Utilizing the finite difference method for a regularized elasto-viscoplastic model, the numerical investigation of the three-dimensional dynamic adiabatic deformation in a particular body under cyclic loading condition is presented.Particular examples have been considered, namely a dynamic adiabatic cyclic loading process for a thin plate with sharp notch. To the upper edge of the plate is applied a cyclic constraint realized by rigid rotation of the edge of the plate while the lower edge is supported rigidly. A small localized region, distributed asymmetrically near the tip of the notch, which undergoes significant deformation and temperature rise, has been determined. Its evolution until occurrence of fatigue fracture has been simulated.The propagation of the macroscopic fatigue damage crack within the material of the plate is investigated. It has been found that the length of the macroscopic fatigue damage crack distinctly depends on the wave shape of the assumed loading cycle. |
| Starting Page | 233 |
| Ending Page | 255 |
| Page Count | 23 |
| File Format | |
| ISSN | 00015970 |
| Journal | Acta Mechanica |
| Volume Number | 155 |
| Issue Number | 3-4 |
| e-ISSN | 16196937 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2002-01-01 |
| Publisher Place | Vienna |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Numerical and Computational Methods in Engineering Continuum Mechanics and Mechanics of Materials Structural Mechanics Vibration, Dynamical Systems, Control Engineering Fluid Dynamics Engineering Thermodynamics, Transport Phenomena |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mechanical Engineering Computational Mechanics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|