Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Zhang, D. Foda, M. A. |
| Copyright Year | 1997 |
| Abstract | Field observations and experimental records indicate that the primary mode of motion of many large landslides is that ofsliding rather thanflowing. Most of shear during sliding is concentrated at the base of slides, with little or no mixing taking place away from the base. This sliding motion may generate strong pressure waves at the interface between the quasi-static deforming granular mass and the grain-inertia dominated rapid granular flow, thus inducing a Kelvin-Helmholtz type instability mechanism for large landslides. The existence of a transitional zone in granular flow is essential for the generation of this type of instability waves. A model using a finite depth of elastic sliding bulk granular materials riding on a basal granular shear flow layer is estabilished to represent the sliding motion of these large volume of bulk granular materials. The balance and the stability of this sliding system are investigated under the perturbation of internal pressure waves. The generated instability waves will force favorable phase shifts between the overburden pressure and the sliding velocity, leading to a net reduction in the total power loss due to friction. The depth of sliding mass will affect the generation of this type of instability waves. Both analytical and numerical results show that smaller depth slides can induce stronger instability waves than larger depth slides do. |
| Starting Page | 1 |
| Ending Page | 19 |
| Page Count | 19 |
| File Format | |
| ISSN | 00015970 |
| Journal | Acta Mechanica |
| Volume Number | 121 |
| Issue Number | 1-4 |
| e-ISSN | 16196937 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 1997-01-01 |
| Publisher Place | Vienna |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Numerical and Computational Methods in Engineering Continuum Mechanics and Mechanics of Materials Structural Mechanics Vibration, Dynamical Systems, Control Engineering Fluid Dynamics Engineering Thermodynamics, Transport Phenomena |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mechanical Engineering Computational Mechanics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|