Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Cebrián, Juan M. Sánchez, Daniel Aragón, Juan L. Kaxiras, Stefas |
| Copyright Year | 2012 |
| Abstract | Nowadays the market is dominated by processor architectures that employ multiple cores per chip. These architectures have different behavior depending on the applications running on the processor (parallel, multiprogrammed, sequential), but all happen to meet what is called the power and temperature wall. For future technologies (less than 22 nm) and a fixed die size, it is still uncertain the percentage of processor that can be simultaneously powered on. Power saving and power budget mechanisms can be useful to precisely control the amount of power been dissipated by the processor. After an initial analysis we discover that legacy power saving techniques work properly for matching a power budget in thread-independent and multi-programmed workloads, but not in parallel workloads. When running parallel shared-memory applications sacrificing some performance in a single core (thread) in order to be more energy-efficient can unintentionally delay the rest of cores (threads) due to synchronization points (locks/barriers), having a negative impact on global performance. In order to solve this problem we propose power token balancing (PTB) aimed at accurately matching an external power constraint by balancing the power consumed among the different cores. Experimental results show that PTB matches more accurately a predefined power budget (50 % of the original peak power) than other mechanisms like DVFS. The total energy consumed over the budget is reduced to only 8 % for a 16-core CMP with only a 3 % energy increase (overhead). We also introduce a novel mechanism named “Nitro”. Nitro will overclock the core that enters a critical section (delimited by locks) in order to free the lock as soon as possible. Experimental results have shown that Nitro is able to reduce the execution time of lock-intensive applications in more than 4 % by overclocking the frequency by 15 % in selected program phases over a period of time that represents a 22 % of the total execution time. We conclude the work with an analysis of the thermal effects of PTB in different CMP configurations using realistic power numbers and heatsink/fan configurations. Results show how PTB not only balances temperature between the different cores, reducing temperature gradient and increasing signal reliability, but also allows a reduction of 28–30 % of both average and peak temperatures for the studied benchmarks when a peak power budget of 50 % is exceeded. |
| Starting Page | 537 |
| Ending Page | 566 |
| Page Count | 30 |
| File Format | |
| ISSN | 0010485X |
| Journal | Computing |
| Volume Number | 95 |
| Issue Number | 7 |
| e-ISSN | 14365057 |
| Language | English |
| Publisher | Springer Vienna |
| Publisher Date | 2012-11-15 |
| Publisher Place | Vienna |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Power consumption Power budget Power tokens Chip multiprocessor Computer Science Information Systems Applications (incl. Internet) Computer Communication Networks Software Engineering Artificial Intelligence (incl. Robotics) Computer Application in Administrative Data Processing |
| Content Type | Text |
| Resource Type | Article |
| Subject | Theoretical Computer Science Computational Theory and Mathematics Computational Mathematics Numerical Analysis Computer Science Applications Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|