Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Han, Bo He, Bo Sun, Tingting Yan, Tianhong Ma, Mengmeng Shen, Yue Lendasse, Amaury |
| Copyright Year | 2015 |
| Abstract | In this paper, we propose a novel method for fast face recognition called L 1/2-regularized sparse representation using hierarchical feature selection. By employing hierarchical feature selection, we can compress the scale and dimension of global dictionary, which directly contributes to the decrease of computational cost in sparse representation that our approach is strongly rooted in. It consists of Gabor wavelets and extreme learning machine auto-encoder (ELM-AE) hierarchically. For Gabor wavelets’ part, local features can be extracted at multiple scales and orientations to form Gabor-feature-based image, which in turn improves the recognition rate. Besides, in the presence of occluded face image, the scale of Gabor-feature-based global dictionary can be compressed accordingly because redundancies exist in Gabor-feature-based occlusion dictionary. For ELM-AE part, the dimension of Gabor-feature-based global dictionary can be compressed because high-dimensional face images can be rapidly represented by low-dimensional feature. By introducing L 1/2 regularization, our approach can produce sparser and more robust representation compared to L 1-regularized sparse representation-based classification (SRC), which also contributes to the decrease of the computational cost in sparse representation. In comparison with related work such as SRC and Gabor-feature-based SRC, experimental results on a variety of face databases demonstrate the great advantage of our method for computational cost. Moreover, we also achieve approximate or even better recognition rate. |
| Starting Page | 305 |
| Ending Page | 320 |
| Page Count | 16 |
| File Format | |
| ISSN | 09410643 |
| Journal | Neural Computing and Applications |
| Volume Number | 27 |
| Issue Number | 2 |
| e-ISSN | 14333058 |
| Language | English |
| Publisher | Springer London |
| Publisher Date | 2015-04-17 |
| Publisher Place | London |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Fast face recognition Hierarchical feature selection Gabor wavelets ELM-AE Sparse representation L 1/2 regularization HSR Artificial Intelligence (incl. Robotics) Data Mining and Knowledge Discovery Probability and Statistics in Computer Science Computational Science and Engineering Image Processing and Computer Vision Computational Biology/Bioinformatics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Artificial Intelligence Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|