Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Lass, Bodo |
| Copyright Year | 2004 |
| Abstract | Let G be a simple graph on n vertices. An r-matching in G is a set of r independent edges. The number of r-matchings in G will be denoted by p(G, r). We set p(G, 0) = 1 and define the matching polynomial of G by $$ \mu {\left( {G,x} \right)}: = {\sum\nolimits_{r = 0}^{{\left\lfloor {n/2} \right\rfloor }} {{\left( { - 1} \right)}^{r} \cdot p{\left( {G,r} \right)} \cdot x^{{n - 2r}} } } $$ and the signless matching polynomial of G by $$ \overline{\mu } {\left( {G,x} \right)}: = {\sum\nolimits_{r = 0}^{{\left\lfloor {n/2} \right\rfloor }} {p{\left( {G,r} \right)} \cdot x^{{n - 2r}} } } $$ .It is classical that the matching polynomials of a graph G determine the matching polynomials of its complement $$ \overline{G} $$ . We make this statement more explicit by proving new duality theorems by the generating function method for set functions. In particular, we show that the matching functions $$ e^{{ - x^{2} /2}} \mu {\left( {G,x} \right)} $$ and $$ e^{{ - x^{2} /2}} \mu {\left( {\overline{G} ,x} \right)} $$ are, up to a sign, real Fourier transforms of each other.Moreover, we generalize Foata’s combinatorial proof of the Mehler formula for Hermite polynomials to matching polynomials. This provides a new short proof of the classical fact that all zeros of µ(G, x) are real. The same statement is also proved for a common generalization of the matching polynomial and the rook polynomial. |
| Ending Page | 440 |
| Page Count | 14 |
| Starting Page | 427 |
| File Format | |
| ISSN | 02099683 |
| e-ISSN | 14396912 |
| Journal | Combinatorica |
| Issue Number | 3 |
| Volume Number | 24 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2004-01-01 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Factorization, matching, partitioning, covering and packing Exact enumeration problems, generating functions Combinatorial inequalities Polynomials: location of zeros (algebraic theorems) |
| Content Type | Text |
| Resource Type | Article |
| Subject | Discrete Mathematics and Combinatorics Computational Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|