Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Balke, Wolf Tilo Güntzer, Ulrich Siberski, Wolf |
| Copyright Year | 2007 |
| Abstract | Skyline queries have recently received a lot of attention due to their intuitive query formulation: users can state preferences with respect to several attributes. Unlike numerical or score-based preferences, preferences over discrete value domains do not show an inherent total order, but have to rely on partial orders as stated by the user. In such orders typically many object values are incomparable, increasing the size of skyline sets significantly, and making their computation expensive. In this paper we explore how to enable interactive tasks like query refinement or relevance feedback by providing interesting subsets of the full Pareto skyline, which give users a good overview over the skyline. To be practical these subsets have to be small, efficient to compute, suitable for higher numbers of query predicates, and representative. The key to improved performance and reduced result set sizes is the relaxation of Pareto semantics to the concept of weak Pareto dominance. We argue that this relaxation yields intuitive results and show how it opens up the use of efficient and scalable query processing algorithms. We first derive the complete skyline subset given by weak Pareto dominance called ‘restricted skyline’ and then considering the individual performance of objects limit this further to a subset called ‘focused skyline’. Assessing the practical impact our experiments show that our approach indeed leads to lean result set sizes and outperforms Pareto skyline computations by up to two orders of magnitude. Skyline-Queries stehen in den letzten Jahren im Fokus der Aufmerksamkeit, da sie eine besonders intuitive Form der Anfragestellung unterstützen. Der Benutzer spezifiziert Präferenzen nur in qualitativer Weise im Bezug auf alle gewünschten Attribute. Im Gegensatz zu numerischen oder Score-basierten Präferenzen, definieren attribut-basierte Präferenzen dabei nicht immer eine totale Ordnung auf den Datenbankobjekten. Sie basieren typischerweise lediglich auf partiellen Ordnungen, die der Benutzer angibt. In solchen Ordnung sind daher viele Objekte unvergleichbar, was die durchschnittliche Größe der Skyline signifikant anwachsen lässt und die Effizienz ihrer Berechnung deutlich verbessert. In dieser Arbeit untersuchen wir die Ableitung interessanter Teilmengen der Pareto-Skyline, die Benutzern einen guten Überblick über die zu erwartenden Objekte für interaktive Aufgaben wie Anfrageverfeinerung oder Relevanz-Feedback bieten. Um nützlich zu sein, müssen diese Teilmengen klein, effizient zu berechnen, für hoch-dimensionale Anfragen geeignet und möglichst repräsentativ sein. Der Schlüssel zu guten Berechnungszeiten und deutlich verkleinerten Skylines ist dabei die Abschwächung der Pareto-Optimalität auf das Konzept der schwachen Pareto-Dominanz. Wir zeigen, dass diese Abschwächung zu intuitiven Ergebnissen führt und die Verwendung effizienter und skalierbarer Anfrageauswertungsalgorithmen erlaubt. Wir werten zuerst die komplette Menge der nicht schwach dominierten Objekte (Restricted Skyline) aus und leiten dann daraus eine besondere Teilmenge jener Objekte ab, die viel versprechend bezüglich des Benutzerinteresses sind (Focused Skyline). Unsere Experimente zur Überprüfung der praktischen Anwendbarkeit unseres Ansatzes zeigen, dass nicht nur die Größe der Resultatmengen deutlich schrumpft, sondern auch die notwendige Auswertungszeit um etwa zwei Größenordnungen reduziert werden kann. |
| Starting Page | 165 |
| Ending Page | 178 |
| Page Count | 14 |
| File Format | |
| ISSN | 01783564 |
| Journal | Informatik - Forschung und Entwicklung |
| Volume Number | 21 |
| Issue Number | 3-4 |
| e-ISSN | 09492925 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2007-05-11 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | Subscribed |
| Subject Keyword | Skyline queries Pareto optimality Result size Weak Pareto dominance Theory of Computation Data Structures, Cryptology and Information Theory Software Engineering/Programming and Operating Systems Computer Systems Organization and Communication Networks Computer Hardware Computer Science |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|