Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Rasmussen, Henrik Koblitz Huang, Qian |
| Copyright Year | 2014 |
| Abstract | We have derived a constitutive equation to explain the extensional dynamics of oligomer-diluted monodisperse polymers, if the length of the diluent has at least two Kuhn steps. These polymer systems have a flow dynamics which distinguish from pure monodisperse melts and solutions thereof, if the solvent has less than two Kuhn steps, e.g. is not a chain. The constitutive equation is based on a phenomenological tube-based model within the methodology of the molecular stress function approach. The nonlinear dynamics have been explained as a consequence of a constant thermal interchain pressure originating from the short polymer chains (e.g. the oligomers) on the wall of the tube containing the long chains. The nonlinear dynamics are uniquely defined by the Rouse time and the maximal extensibility of the long polymer chains. Both are linked to the entanglement length. The relation between the Rouse times and entanglements have been established based on published extensional experiments on nearly monodisperse polystyrene melts. The constitutive equation has shown agreement with the experimental startup of and steady extension data from Huang et al. (Macromolecules 46:5026–5035, 2013a) based on 285 and 545 kg/mol polystyrenes diluted in styrene oligomers containing 3.3 (1.92 kg/mol) and 7.3 (4.29 kg/mol) Kuhn steps. |
| Starting Page | 199 |
| Ending Page | 208 |
| Page Count | 10 |
| File Format | |
| ISSN | 00354511 |
| Journal | Rheologica Acta |
| Volume Number | 53 |
| Issue Number | 3 |
| e-ISSN | 14351528 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2014-02-02 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Constitutive equation Uniaxial extension Polystyrene Polymer melt Nonlinear viscoelasticity Characterization and Evaluation of Materials Polymer Sciences Soft and Granular Matter, Complex Fluids and Microfluidics Mechanical Engineering Food Science |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mechanics of Materials Condensed Matter Physics Materials Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|