Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Gil, Ryan B. Lehmann, Rainer Schmitt Kopplin, Philippe Heinzmann, Silke S. |
| Copyright Year | 2016 |
| Abstract | Metabolite profiling of urine has seen much advancement in recent years, and its analysis by nuclear magnetic resonance (NMR) spectroscopy has become well established. However, the highly variable nature of human urine still requires improved protocols despite some standardization. In particular, diseases such as kidney disease can have a profound effect on the composition of urine and generate a highly diverse sample set for clinical studies. Large variations in pH and the cationic concentration of urine play an important role in creating positional noise within datasets generated from NMR. We demonstrate positional noise to be a confounding variable for multivariate statistical tools such as statistical total correlation spectroscopy (STOCSY), thereby hindering the process of biomarker discovery. We present a two-dimensional buffering system using potassium fluoride (KF) and phosphate buffer to reduce positional noise in metabolomic data generated from urine samples with various levels of proteinuria. KF reduces positional noise in citrate peaks, by decreasing the mean relative standard deviation (RSD) from 0.17 to 0.09. By reducing positional noise with KF, STOCSY analysis of citrate peaks saw significant improvement. We further aligned spectral data using a recursive segment-wise peak alignment (RSPA) method, which leads to further improvement of the positional noise (RSD = 0.06). These results were validated using diverse selection of metabolites which lead to an overall improvement in positional noise using the suggested protocol. In summary, we provide an improved workflow for urine metabolite biomarker discovery to achieve higher data quality for better pathophysiological understanding of human diseases. Graphical abstract Citrate peaks in the range 2.75–2.5 ppm from datasets with different sample preparation protocols and with/without in silico alignment. A Citrate peaks with standard phosphate buffering and without in silico alignment. B citrate peaks with standard phosphate buffering and with in silico alignment. C citrate peak with additional potassium fluoride and standard phosphate buffering without in silico alignment. D citrate peaks with additional potassium fluoride and standard phosphate buffering with in silico alignment. Below the respective spectrum are displayed the percent relative standard deviation (RSD) of the respective citrate peaks. This is a measure of the positional noise of peaks within a 1H NMR analysis. It can be seen that D performs the best in reducing positional noise of citrate peaks. E–H STOCSY analysis of correlating spectral features with the driver peak at 2.675 ppm (see red arrow) to identify structural correlations. As a, b, c, and d are known to be structurally correlated, STOCSY analysis should reveal r 2 = 1 if data is perfectly aligned and can therefore be used as a measure of peak alignment. E Strong positional noise does not allow identifying the c and d peaks of the AB system to be correlated. F, G Neither in silico alignment or KF addition alone can completely improve the alignment and therefore increase the correlations. H Highly improved alignment by combining both KF addition and in silico alignment reduces positional noise and elucidates all four citrate peaks to be strongly correlated |
| Starting Page | 4683 |
| Ending Page | 4691 |
| Page Count | 9 |
| File Format | |
| ISSN | 16182642 |
| Journal | Analytical and Bioanalytical Chemistry |
| Volume Number | 408 |
| Issue Number | 17 |
| e-ISSN | 16182650 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2016-05-13 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Metabolomics Non-targeted Multivariate data analysis Biomarker discovery Urine Nuclear magnetic resonance spectroscopy Analytical Chemistry Biochemistry Laboratory Medicine Characterization and Evaluation of Materials Food Science Environmental Monitoring/Analysis |
| Content Type | Text |
| Resource Type | Article |
| Subject | Analytical Chemistry Biochemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|