Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Bischl, Bernd Schiffner, Julia Weihs, Claus |
| Copyright Year | 2013 |
| Abstract | In recent years in the fields of statistics and machine learning an increasing amount of so called local classification methods has been developed. Local approaches to classification are not new, but have lately become popular. Well-known examples are the $$k$$ nearest neighbors method and classification trees. However, in most publications on this topic the term “local” is used without further explanation of its particular meaning. Only little is known about the properties of local methods and the types of classification problems for which they may be beneficial. We explain the basic principles and introduce the most important variants of local methods. To our knowledge there are very few extensive studies in the literature that compare several types of local methods and global methods across many data sets. In order to assess their performance we conduct a benchmark study on real-world and synthetic tasks. We cluster data sets and considered learning algorithms with regard to the obtained performance structures and try to relate our theoretical considerations and intuitions to these results. We also address some general issues of benchmark studies and cover some pitfalls, extensions and improvements. |
| Starting Page | 2599 |
| Ending Page | 2619 |
| Page Count | 21 |
| File Format | |
| ISSN | 09434062 |
| Journal | Computational Statistics |
| Volume Number | 28 |
| Issue Number | 6 |
| e-ISSN | 16139658 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2013-05-08 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Local classification methods Benchmark study Machine learning Model selection Statistics Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Economic Theory |
| Content Type | Text |
| Resource Type | Article |
| Subject | Statistics and Probability Statistics, Probability and Uncertainty Computational Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|