WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. The International Journal of Advanced Manufacturing Technology
  2. The International Journal of Advanced Manufacturing Technology : Volume 32
  3. The International Journal of Advanced Manufacturing Technology : Volume 32, Issue 11-12, May 2007
  4. A study on the plasma-augmented laser welding for small-diameter STS tubes
Loading...

Please wait, while we are loading the content...

The International Journal of Advanced Manufacturing Technology : Volume 91
The International Journal of Advanced Manufacturing Technology : Volume 90
The International Journal of Advanced Manufacturing Technology : Volume 89
The International Journal of Advanced Manufacturing Technology : Volume 88
The International Journal of Advanced Manufacturing Technology : Volume 87
The International Journal of Advanced Manufacturing Technology : Volume 86
The International Journal of Advanced Manufacturing Technology : Volume 85
The International Journal of Advanced Manufacturing Technology : Volume 84
The International Journal of Advanced Manufacturing Technology : Volume 83
The International Journal of Advanced Manufacturing Technology : Volume 82
The International Journal of Advanced Manufacturing Technology : Volume 81
The International Journal of Advanced Manufacturing Technology : Volume 80
The International Journal of Advanced Manufacturing Technology : Volume 79
The International Journal of Advanced Manufacturing Technology : Volume 78
The International Journal of Advanced Manufacturing Technology : Volume 77
The International Journal of Advanced Manufacturing Technology : Volume 76
The International Journal of Advanced Manufacturing Technology : Volume 75
The International Journal of Advanced Manufacturing Technology : Volume 74
The International Journal of Advanced Manufacturing Technology : Volume 73
The International Journal of Advanced Manufacturing Technology : Volume 72
The International Journal of Advanced Manufacturing Technology : Volume 71
The International Journal of Advanced Manufacturing Technology : Volume 70
The International Journal of Advanced Manufacturing Technology : Volume 69
The International Journal of Advanced Manufacturing Technology : Volume 68
The International Journal of Advanced Manufacturing Technology : Volume 67
The International Journal of Advanced Manufacturing Technology : Volume 66
The International Journal of Advanced Manufacturing Technology : Volume 65
The International Journal of Advanced Manufacturing Technology : Volume 64
The International Journal of Advanced Manufacturing Technology : Volume 63
The International Journal of Advanced Manufacturing Technology : Volume 62
The International Journal of Advanced Manufacturing Technology : Volume 61
The International Journal of Advanced Manufacturing Technology : Volume 60
The International Journal of Advanced Manufacturing Technology : Volume 59
The International Journal of Advanced Manufacturing Technology : Volume 58
The International Journal of Advanced Manufacturing Technology : Volume 57
The International Journal of Advanced Manufacturing Technology : Volume 56
The International Journal of Advanced Manufacturing Technology : Volume 55
The International Journal of Advanced Manufacturing Technology : Volume 54
The International Journal of Advanced Manufacturing Technology : Volume 53
The International Journal of Advanced Manufacturing Technology : Volume 52
The International Journal of Advanced Manufacturing Technology : Volume 51
The International Journal of Advanced Manufacturing Technology : Volume 50
The International Journal of Advanced Manufacturing Technology : Volume 49
The International Journal of Advanced Manufacturing Technology : Volume 48
The International Journal of Advanced Manufacturing Technology : Volume 47
The International Journal of Advanced Manufacturing Technology : Volume 46
The International Journal of Advanced Manufacturing Technology : Volume 45
The International Journal of Advanced Manufacturing Technology : Volume 44
The International Journal of Advanced Manufacturing Technology : Volume 43
The International Journal of Advanced Manufacturing Technology : Volume 42
The International Journal of Advanced Manufacturing Technology : Volume 41
The International Journal of Advanced Manufacturing Technology : Volume 40
The International Journal of Advanced Manufacturing Technology : Volume 39
The International Journal of Advanced Manufacturing Technology : Volume 38
The International Journal of Advanced Manufacturing Technology : Volume 37
The International Journal of Advanced Manufacturing Technology : Volume 36
The International Journal of Advanced Manufacturing Technology : Volume 35
The International Journal of Advanced Manufacturing Technology : Volume 34
The International Journal of Advanced Manufacturing Technology : Volume 33
The International Journal of Advanced Manufacturing Technology : Volume 32
The International Journal of Advanced Manufacturing Technology : Volume 32, Issue 11-12, May 2007
Parameter coordination and optimization for collaborative design based on the constraints network
A quality-engineering-based approach for conceptual product design
Determination of optimal blank holder force trajectories for segmented binders of step rectangle box using PID closed-loop FEM simulation
Cutting behavior and related cracks in wear and fracture of ceramic tool materials
Machining fixture layout optimization using FEM and evolutionary techniques
Experimental investigation of feed rate limitations on high speed milling aimed at industrial applications
A surface roughness prediction model for hard turning process
Effects of process parameters on the bead geometry of laser beam butt welded stainless steel sheets
A study on the plasma-augmented laser welding for small-diameter STS tubes
The influence of cavity deformation on the shrinkage and warpage of an injection-molded part
Laser cutting with controlled fracture and pre-bending applied to LCD glass separation
Self-modulating abrasive medium and its application to abrasive flow machining for finishing micro channel surfaces
Diagonal shaving of an involute pinion: optimization of the geometric and kinematic parameters for the pinion finishing operation
Localization of parts with irregular shape for CMM inspection
Automatic detection of stamping defects in leadframes using machine vision: Overcoming translational and rotational misalignment
A linear drive system for the dynamic focus module of SLS machines
An approach for balancing and sequencing mixed-model JIT U-lines
A knowledge-based approach to assembly sequence planning
A genetic algorithm to process-oriented optimization of joint configuration based on a skeleton model
Fuzzy analytic hierarchy process based group decision support system to select and evaluate new manufacturing technologies
The International Journal of Advanced Manufacturing Technology : Volume 32, Issue 9-10, April 2007
The International Journal of Advanced Manufacturing Technology : Volume 32, Issue 7-8, April 2007
The International Journal of Advanced Manufacturing Technology : Volume 32, Issue 5-6, March 2007
The International Journal of Advanced Manufacturing Technology : Volume 32, Issue 3-4, March 2007
The International Journal of Advanced Manufacturing Technology : Volume 32, Issue 1-2, February 2007
The International Journal of Advanced Manufacturing Technology : Volume 31
The International Journal of Advanced Manufacturing Technology : Volume 30
The International Journal of Advanced Manufacturing Technology : Volume 29
The International Journal of Advanced Manufacturing Technology : Volume 28
The International Journal of Advanced Manufacturing Technology : Volume 27
The International Journal of Advanced Manufacturing Technology : Volume 26
The International Journal of Advanced Manufacturing Technology : Volume 25
The International Journal of Advanced Manufacturing Technology : Volume 24
The International Journal of Advanced Manufacturing Technology : Volume 23
The International Journal of Advanced Manufacturing Technology : Volume 22
The International Journal of Advanced Manufacturing Technology : Volume 21
The International Journal of Advanced Manufacturing Technology : Volume 20
The International Journal of Advanced Manufacturing Technology : Volume 19
The International Journal of Advanced Manufacturing Technology : Volume 18
The International Journal of Advanced Manufacturing Technology : Volume 17
The International Journal of Advanced Manufacturing Technology : Volume 16
The International Journal of Advanced Manufacturing Technology : Volume 15
The International Journal of Advanced Manufacturing Technology : Volume 14
The International Journal of Advanced Manufacturing Technology : Volume 13

Similar Documents

...
Study of plasma in laser welding of magnesium alloy

Article

...
A robust design in hardfacing using a plasma transfer arc

Article

...
Arc characteristics and metal transfer process of hybrid laser double GMA welding

Article

...
Weld outline comparison between various pulsed Nd:YAG laser welding and pulsed Nd:YAG laser–TIG arc welding

Article

...
Laser visual sensing for seam tracking in robotic arc welding of titanium alloys

Article

...
Experimental sensing of the keyhole exit deviation from the torch axis in plasma arc welding

Article

...
Laser-arc hybrid welding of wrought to selective laser molten stainless steel

Article

...
Investigation on weldability of magnesium alloy thin sheet T-joints: arc welding, laser welding, and laser-arc hybrid welding

Article

...
Weldability and joining characteristics of AISI 430/AISI 1040 steels using keyhole plasma arc welding

Article

A study on the plasma-augmented laser welding for small-diameter STS tubes

Content Provider Springer Nature Link
Author Yoon, S. H. Hwang, J. R. Na, S. J.
Copyright Year 2006
Abstract Laser welding is an effective method to join small, thin parts, such as small stainless steel tubes. Laser power can be precisely adjusted to melt only a small part of the tubes, and the heat-affected zone can be controlled accurately. But laser welding systems are generally expensive; therefore, the welding speed is restricted by the maximal laser power capacity. Also, the laser welding method is very sensitive to the joint clearance and tolerance, and this makes laser welding difficult to obtain consistent welding qualities over time. Recently, solutions of these problems are being tried by introducing another heat source, such as a plasma arc. Additional plasma arc energy can make the overall welding speed faster, and sensitivity to the joint clearance can be reduced by the plasma arc. Plasma-augmented laser welding (PALW) is one of this kind of welding method, where a plasma arc is used to augment the laser welding. In this study, plasma arc welding (PAW) was added to the existing single-laser heat source to join the conventional V-grooved butt joint of thin stainless steel strips for manufacturing small-diameter stainless steel tubes. The effect of the welding speed enhancement was investigated by experiments and simulations. Finite element (FE) thermal analysis considering multiple reflections of a laser beam in the V-groove was conducted and verified.
Starting Page 1134
Ending Page 1143
Page Count 10
File Format PDF
ISSN 02683768
Journal The International Journal of Advanced Manufacturing Technology
Volume Number 32
Issue Number 11-12
e-ISSN 14333015
Language English
Publisher Springer-Verlag
Publisher Date 2006-04-11
Publisher Place London
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword Plasma-augmented laser welding Plasma arc welding Laser welding STS tube Small-diameter tube Computer-Aided Engineering (CAD, CAE) and Design Mechanical Engineering Production/Logistics Industrial and Production Engineering
Content Type Text
Resource Type Article
Subject Industrial and Manufacturing Engineering Control and Systems Engineering Mechanical Engineering Computer Science Applications Software
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...