Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Badkar, Duradundi Sawant Pandey, Krishna Shankar Buvanashekaran, G. |
| Copyright Year | 2012 |
| Abstract | Laser transformation hardening (LTH) is an innovative and advanced laser surface modification technique as compared to conventional transformation hardening processes and has been employed in aerospace, marine, chemical applications, heat exchangers, cryogenic vessels, components for chemical processing and desalination equipment, condenser tubing, airframe skin, and nonstructural components which introduces the advantageous residual stresses into the surface, improving the mechanical properties like wear, resistance to corrosion, tensile strength, and fatigue strength. In the present study, LTH of commercially pure titanium, nearer to ASTM grade 3 of chemical composition was investigated using continuous wave 2 kW, Nd: YAG laser. The effect of laser process variables such as laser power, scanning speed, and focused position was investigated using response surface methodology (RSM) and artificial neural network (ANN) keeping argon gas flow rate of 10 lpm as fixed input parameter. This paper describes the comparison of the heat input (HI) and ultimate tensile strength (σ) (simply called as tensile strength) predictive models based on ANN and RSM. The paper also presents the effect of laser process variables on the HI and ultimate σ. The research work also emphasizes on the effect of HI on σ. The experiments were conducted based on a three-factor, three-level Box–Behnken surface statistical design. Quadratic polynomial equations were developed for proper process parametric study for its optimal performance characteristics. The experimental results under optimum conditions were compared with the simulated values obtained from the RSM and ANN model. Adequacy of the developed models was tested by analysis of variance technique. A multilayer feed-forward neural network with a Levenberg–Marquardt back-propagation algorithm was adopted to develop the relationships between the laser hardening process parameters, HI, and ultimate σ. The performance of the developed ANN models were compared with the second-order RSM mathematical models of HI and σ. There was good agreement between the experimental and simulated values of RSM and ANN. The comparison clearly indicates that the ANN models provide more accurate prediction compared to the RSM models. It has been found that there is a trend of increased tensile strength with the decrease of hardening heat input and a trend of increased tensile strength with the increase of hardening cooling rate. As heat input decreases, there will be a faster cooling rate. Considering the effect of HI on ultimate σ, it was found that the lower the heat input, the faster cooling rate. The details of experimentation, model development, testing, validation of models, effect of laser process variables on heat input and ultimate σ, effect of HI on σ, and performance comparison of RSM and ANN models are presented in the paper. The results of Box–Behnken design of RSM and ANN models also indicate that the proposed models predict the responses adequately within the limits of input parameters being used. It is suggested that regression equations can be used to find optimum conditions for HI and σ of laser-hardened commercially pure titanium material. |
| Starting Page | 1319 |
| Ending Page | 1338 |
| Page Count | 20 |
| File Format | |
| ISSN | 02683768 |
| Journal | The International Journal of Advanced Manufacturing Technology |
| Volume Number | 65 |
| Issue Number | 9-12 |
| e-ISSN | 14333015 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2012-06-06 |
| Publisher Place | London |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | LTH Nd: YAG laser RSM ANN Heat input Tensile strength Box–Behnken Industrial and Production Engineering Production/Logistics/Supply Chain Mechanical Engineering Computer-Aided Engineering (CAD, CAE) and Design |
| Content Type | Text |
| Resource Type | Article |
| Subject | Industrial and Manufacturing Engineering Control and Systems Engineering Mechanical Engineering Computer Science Applications Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|