WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Language
    অসমীয়া বাংলা भोजपुरी डोगरी English ગુજરાતી हिंदी ಕನ್ನಡ
    Khasi कोंकणी मैथिली മലയാളം ꯃꯤꯇꯩ ꯂꯣꯟ मराठी Mizo नेपाली
    ଓଡ଼ିଆ ਪੰਜਾਬੀ संस्कृत ᱥᱟᱱᱛᱟᱲᱤ सिन्धी தமிழ் తెలుగు اردو
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. The International Journal of Advanced Manufacturing Technology
  2. The International Journal of Advanced Manufacturing Technology : Volume 34
  3. The International Journal of Advanced Manufacturing Technology : Volume 34, Issue 11-12, November 2007
  4. Integrated rough machining methodology for centrifugal impeller manufacturing
Loading...

Please wait, while we are loading the content...

The International Journal of Advanced Manufacturing Technology : Volume 91
The International Journal of Advanced Manufacturing Technology : Volume 90
The International Journal of Advanced Manufacturing Technology : Volume 89
The International Journal of Advanced Manufacturing Technology : Volume 88
The International Journal of Advanced Manufacturing Technology : Volume 87
The International Journal of Advanced Manufacturing Technology : Volume 86
The International Journal of Advanced Manufacturing Technology : Volume 85
The International Journal of Advanced Manufacturing Technology : Volume 84
The International Journal of Advanced Manufacturing Technology : Volume 83
The International Journal of Advanced Manufacturing Technology : Volume 82
The International Journal of Advanced Manufacturing Technology : Volume 81
The International Journal of Advanced Manufacturing Technology : Volume 80
The International Journal of Advanced Manufacturing Technology : Volume 79
The International Journal of Advanced Manufacturing Technology : Volume 78
The International Journal of Advanced Manufacturing Technology : Volume 77
The International Journal of Advanced Manufacturing Technology : Volume 76
The International Journal of Advanced Manufacturing Technology : Volume 75
The International Journal of Advanced Manufacturing Technology : Volume 74
The International Journal of Advanced Manufacturing Technology : Volume 73
The International Journal of Advanced Manufacturing Technology : Volume 72
The International Journal of Advanced Manufacturing Technology : Volume 71
The International Journal of Advanced Manufacturing Technology : Volume 70
The International Journal of Advanced Manufacturing Technology : Volume 69
The International Journal of Advanced Manufacturing Technology : Volume 68
The International Journal of Advanced Manufacturing Technology : Volume 67
The International Journal of Advanced Manufacturing Technology : Volume 66
The International Journal of Advanced Manufacturing Technology : Volume 65
The International Journal of Advanced Manufacturing Technology : Volume 64
The International Journal of Advanced Manufacturing Technology : Volume 63
The International Journal of Advanced Manufacturing Technology : Volume 62
The International Journal of Advanced Manufacturing Technology : Volume 61
The International Journal of Advanced Manufacturing Technology : Volume 60
The International Journal of Advanced Manufacturing Technology : Volume 59
The International Journal of Advanced Manufacturing Technology : Volume 58
The International Journal of Advanced Manufacturing Technology : Volume 57
The International Journal of Advanced Manufacturing Technology : Volume 56
The International Journal of Advanced Manufacturing Technology : Volume 55
The International Journal of Advanced Manufacturing Technology : Volume 54
The International Journal of Advanced Manufacturing Technology : Volume 53
The International Journal of Advanced Manufacturing Technology : Volume 52
The International Journal of Advanced Manufacturing Technology : Volume 51
The International Journal of Advanced Manufacturing Technology : Volume 50
The International Journal of Advanced Manufacturing Technology : Volume 49
The International Journal of Advanced Manufacturing Technology : Volume 48
The International Journal of Advanced Manufacturing Technology : Volume 47
The International Journal of Advanced Manufacturing Technology : Volume 46
The International Journal of Advanced Manufacturing Technology : Volume 45
The International Journal of Advanced Manufacturing Technology : Volume 44
The International Journal of Advanced Manufacturing Technology : Volume 43
The International Journal of Advanced Manufacturing Technology : Volume 42
The International Journal of Advanced Manufacturing Technology : Volume 41
The International Journal of Advanced Manufacturing Technology : Volume 40
The International Journal of Advanced Manufacturing Technology : Volume 39
The International Journal of Advanced Manufacturing Technology : Volume 38
The International Journal of Advanced Manufacturing Technology : Volume 37
The International Journal of Advanced Manufacturing Technology : Volume 36
The International Journal of Advanced Manufacturing Technology : Volume 35
The International Journal of Advanced Manufacturing Technology : Volume 34
The International Journal of Advanced Manufacturing Technology : Volume 34, Issue 11-12, November 2007
Dynamic equations of a multi-stage isolation system
Integrated rough machining methodology for centrifugal impeller manufacturing
Geometry design model of a precise form-milling cutter based on the machining characteristics
Development of an management information system as knowledge base model for machining process characterisation
Prediction of solidification time during solidification of aluminum base alloy castings cast in CO2-sand mold
Modeling and simulation of wire feed rate for steady current and pulsed current gas metal arc welding using 317L flux cored wire
A study of die helical thread cavity surface finish made by Cu-W electrodes with planetary EDM
Rapid tooling aided by reverse engineering to manufacture EDM electrodes
An empirical research for CNC technology implementation in manufacturing SMEs
A genetic algorithm for the inter-cell layout and material handling system design
Irregular shapes classification by back-propagation neural networks
An efficient algorithm for scheduling jobs on a machine with periodic maintenance
Solving single-machine total weighted tardiness problems with sequence-dependent setup times by meta-heuristics
Parametric optimization of advanced fine-finishing processes
Modeling and controling the FMS of a welding robot
Conception and implementation of a collaborative manufacturing grid
Customer-focused and product-line-based manufacturing performance measurement
Formation of dynamic virtual enterprises and enterprise networks
The International Journal of Advanced Manufacturing Technology : Volume 34, Issue 9-10, October 2007
The International Journal of Advanced Manufacturing Technology : Volume 34, Issue 7-8, October 2007
The International Journal of Advanced Manufacturing Technology : Volume 34, Issue 5-6, September 2007
The International Journal of Advanced Manufacturing Technology : Volume 34, Issue 3-4, September 2007
The International Journal of Advanced Manufacturing Technology : Volume 34, Issue 1-2, August 2007
The International Journal of Advanced Manufacturing Technology : Volume 33
The International Journal of Advanced Manufacturing Technology : Volume 32
The International Journal of Advanced Manufacturing Technology : Volume 31
The International Journal of Advanced Manufacturing Technology : Volume 30
The International Journal of Advanced Manufacturing Technology : Volume 29
The International Journal of Advanced Manufacturing Technology : Volume 28
The International Journal of Advanced Manufacturing Technology : Volume 27
The International Journal of Advanced Manufacturing Technology : Volume 26
The International Journal of Advanced Manufacturing Technology : Volume 25
The International Journal of Advanced Manufacturing Technology : Volume 24
The International Journal of Advanced Manufacturing Technology : Volume 23
The International Journal of Advanced Manufacturing Technology : Volume 22
The International Journal of Advanced Manufacturing Technology : Volume 21
The International Journal of Advanced Manufacturing Technology : Volume 20
The International Journal of Advanced Manufacturing Technology : Volume 19
The International Journal of Advanced Manufacturing Technology : Volume 18
The International Journal of Advanced Manufacturing Technology : Volume 17
The International Journal of Advanced Manufacturing Technology : Volume 16
The International Journal of Advanced Manufacturing Technology : Volume 15
The International Journal of Advanced Manufacturing Technology : Volume 14
The International Journal of Advanced Manufacturing Technology : Volume 13

Similar Documents

...
A five-axis rough machining approach for a centrifugal impeller

Article

...
An efficient five-axis machining method of centrifugal impeller based on regional milling

Article

...
An integrated framework of tool path planning in 5-axis machining of centrifugal impeller with split blades

Article

...
Investigation of tool orientation for milling blade of impeller in five-axis machining

Article

...
A novel five-axis rough machining method for efficient manufacturing of centrifugal impeller with free-form blades

Article

...
Optimization of the rough cutting factors of impeller with five-axis machine using response surface methodology

Article

...
Optimal strategy for finishing impeller blades using 5-axis machining

Article

...
Collision and interference correction for impeller machining with non-orthogonal four-axis machine tool

Article

...
Spline-constrained tool-path planning in five-axis flank machining of ruled surfaces

Article

Integrated rough machining methodology for centrifugal impeller manufacturing

Content Provider Springer Nature Link
Author Chuang, Li Chang Young, Hong Tsu
Copyright Year 2006
Abstract In mechanical engineering, most products or components, especially those for aerospace applications, are designed to fit the requirements of free-form surface features. The impeller often required by 5-axis machine operations is a key component of the aerospace industry. When 3-axis CNC machining center is used to manufacture the impeller, great difficulties, i.e., collisions between the cutting tool and impeller, need to be overcome. Presently most commercial CAM systems for 5-axis control lack generality, and functions for the rough tool-path generation are far from sufficient. Although the rough machining is the most important procedure influencing the machining efficiency and the condition for the following finishing process, many difficulties arise in performing 5-axis rough machining. The main objective of the present study is to overcome this problem by integrating the state-of-art machining technology, and consequently effective rough tool-paths are to be generated. This study aims to implement the algorithm of the constant scallop height method to improve tool-path planning of rough machining. As a result CL data based on the geometry model of blade and hub are generated. The CL data are confirmed by comparing them with original CAD model through software simulations and later by machining experiments. The verification results show that the machining methodology and procedure adopted turn out to be a successful case.
Starting Page 1062
Ending Page 1071
Page Count 10
File Format PDF
ISSN 02683768
Journal The International Journal of Advanced Manufacturing Technology
Volume Number 34
Issue Number 11-12
e-ISSN 14333015
Language English
Publisher Springer-Verlag
Publisher Date 2006-08-18
Publisher Place London
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword Centrifugal impeller Tool-path planning 5-axis Machine 5-axis rough machining 5-axis machining Computer-Aided Engineering (CAD, CAE) and Design Mechanical Engineering Production/Logistics Industrial and Production Engineering
Content Type Text
Resource Type Article
Subject Industrial and Manufacturing Engineering Control and Systems Engineering Mechanical Engineering Computer Science Applications Software
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
Cite this Content
Loading...