WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. The International Journal of Advanced Manufacturing Technology
  2. The International Journal of Advanced Manufacturing Technology : Volume 31
  3. The International Journal of Advanced Manufacturing Technology : Volume 31, Issue 5-6, December 2006
  4. Construction of 3D solder paste surfaces using multi-projection images
Loading...

Please wait, while we are loading the content...

The International Journal of Advanced Manufacturing Technology : Volume 91
The International Journal of Advanced Manufacturing Technology : Volume 90
The International Journal of Advanced Manufacturing Technology : Volume 89
The International Journal of Advanced Manufacturing Technology : Volume 88
The International Journal of Advanced Manufacturing Technology : Volume 87
The International Journal of Advanced Manufacturing Technology : Volume 86
The International Journal of Advanced Manufacturing Technology : Volume 85
The International Journal of Advanced Manufacturing Technology : Volume 84
The International Journal of Advanced Manufacturing Technology : Volume 83
The International Journal of Advanced Manufacturing Technology : Volume 82
The International Journal of Advanced Manufacturing Technology : Volume 81
The International Journal of Advanced Manufacturing Technology : Volume 80
The International Journal of Advanced Manufacturing Technology : Volume 79
The International Journal of Advanced Manufacturing Technology : Volume 78
The International Journal of Advanced Manufacturing Technology : Volume 77
The International Journal of Advanced Manufacturing Technology : Volume 76
The International Journal of Advanced Manufacturing Technology : Volume 75
The International Journal of Advanced Manufacturing Technology : Volume 74
The International Journal of Advanced Manufacturing Technology : Volume 73
The International Journal of Advanced Manufacturing Technology : Volume 72
The International Journal of Advanced Manufacturing Technology : Volume 71
The International Journal of Advanced Manufacturing Technology : Volume 70
The International Journal of Advanced Manufacturing Technology : Volume 69
The International Journal of Advanced Manufacturing Technology : Volume 68
The International Journal of Advanced Manufacturing Technology : Volume 67
The International Journal of Advanced Manufacturing Technology : Volume 66
The International Journal of Advanced Manufacturing Technology : Volume 65
The International Journal of Advanced Manufacturing Technology : Volume 64
The International Journal of Advanced Manufacturing Technology : Volume 63
The International Journal of Advanced Manufacturing Technology : Volume 62
The International Journal of Advanced Manufacturing Technology : Volume 61
The International Journal of Advanced Manufacturing Technology : Volume 60
The International Journal of Advanced Manufacturing Technology : Volume 59
The International Journal of Advanced Manufacturing Technology : Volume 58
The International Journal of Advanced Manufacturing Technology : Volume 57
The International Journal of Advanced Manufacturing Technology : Volume 56
The International Journal of Advanced Manufacturing Technology : Volume 55
The International Journal of Advanced Manufacturing Technology : Volume 54
The International Journal of Advanced Manufacturing Technology : Volume 53
The International Journal of Advanced Manufacturing Technology : Volume 52
The International Journal of Advanced Manufacturing Technology : Volume 51
The International Journal of Advanced Manufacturing Technology : Volume 50
The International Journal of Advanced Manufacturing Technology : Volume 49
The International Journal of Advanced Manufacturing Technology : Volume 48
The International Journal of Advanced Manufacturing Technology : Volume 47
The International Journal of Advanced Manufacturing Technology : Volume 46
The International Journal of Advanced Manufacturing Technology : Volume 45
The International Journal of Advanced Manufacturing Technology : Volume 44
The International Journal of Advanced Manufacturing Technology : Volume 43
The International Journal of Advanced Manufacturing Technology : Volume 42
The International Journal of Advanced Manufacturing Technology : Volume 41
The International Journal of Advanced Manufacturing Technology : Volume 40
The International Journal of Advanced Manufacturing Technology : Volume 39
The International Journal of Advanced Manufacturing Technology : Volume 38
The International Journal of Advanced Manufacturing Technology : Volume 37
The International Journal of Advanced Manufacturing Technology : Volume 36
The International Journal of Advanced Manufacturing Technology : Volume 35
The International Journal of Advanced Manufacturing Technology : Volume 34
The International Journal of Advanced Manufacturing Technology : Volume 33
The International Journal of Advanced Manufacturing Technology : Volume 32
The International Journal of Advanced Manufacturing Technology : Volume 31
The International Journal of Advanced Manufacturing Technology : Volume 31, Issue 11-12, February 2007
The International Journal of Advanced Manufacturing Technology : Volume 31, Issue 9-10, January 2007
The International Journal of Advanced Manufacturing Technology : Volume 31, Issue 7-8, January 2007
The International Journal of Advanced Manufacturing Technology : Volume 31, Issue 5-6, December 2006
Using a knowledge-based intelligent system to support dynamic design reasoning for a collaborative design community
The efficacy of back propagation neural network with delta bar delta learning in predicting the wear of carbide inserts in face milling
Image processing for chatter identification in machining processes
Development of a process sequence determination technique by fuzzy set theory for an electric product with piercing and bending operation
Wettability improving of 2024 aluminium alloy by oxygen cold plasma treatment
A laser sensor with multiple detectors for freeform surface digitization
Building Porous Biopolymeric Microstructures for Controlled Drug Delivery Devices Using Selective Laser Sintering
Design of an analytic-hierarchy-process-based expert system for non-traditional machining process selection
Fabricating micromilling tool using wire electrodischarge grinding and focused ion beam sputtering
Construction of 3D solder paste surfaces using multi-projection images
Response surface analysis of electro jet drilled holes
The modeling and analysis of a butting assembly in the presence of workpiece surface roughness and part dimensional error
Grey evaluation of non-statistical uncertainty in multidimensional precision measurement
A hybrid stereo vision method using a correlation function and variable window based on voxel components
Obtaining a program for machining an aerodynamic profile using Matlab
An optimized contour parallel tool path for 2D milling with flat endmill
Direct generation of die surfaces from measured data points based on springback compensation
Solving job shop scheduling problems using artificial immune system
Effect of conversion of functional layout to a cellular layout on the queue time performance: some new insights
A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS
Insulating safety analysis of the hot-line sweeping robot
Parameter identification and tuning of the servo system of a 3-HSS parallel kinematic machine
The International Journal of Advanced Manufacturing Technology : Volume 31, Issue 3-4, November 2006
The International Journal of Advanced Manufacturing Technology : Volume 31, Issue 1-2, November 2006
The International Journal of Advanced Manufacturing Technology : Volume 30
The International Journal of Advanced Manufacturing Technology : Volume 29
The International Journal of Advanced Manufacturing Technology : Volume 28
The International Journal of Advanced Manufacturing Technology : Volume 27
The International Journal of Advanced Manufacturing Technology : Volume 26
The International Journal of Advanced Manufacturing Technology : Volume 25
The International Journal of Advanced Manufacturing Technology : Volume 24
The International Journal of Advanced Manufacturing Technology : Volume 23
The International Journal of Advanced Manufacturing Technology : Volume 22
The International Journal of Advanced Manufacturing Technology : Volume 21
The International Journal of Advanced Manufacturing Technology : Volume 20
The International Journal of Advanced Manufacturing Technology : Volume 19
The International Journal of Advanced Manufacturing Technology : Volume 18
The International Journal of Advanced Manufacturing Technology : Volume 17
The International Journal of Advanced Manufacturing Technology : Volume 16
The International Journal of Advanced Manufacturing Technology : Volume 15
The International Journal of Advanced Manufacturing Technology : Volume 14
The International Journal of Advanced Manufacturing Technology : Volume 13

Similar Documents

...
Solder paste inspection using region-based defect detection

Article

...
Solder paste inspection using region-based defect detection

Article

...
Solder joint inspection with multi-angle imaging and an artificial neural network

Article

...
Enhancing moulds manufacturing by means of reverse engineering

Article

...
An automatic optical inspection of drill point defects for micro-drilling

Article

...
The development of automated solder bump inspection using machine vision techniques

Article

...
A real time marking inspection scheme for semiconductor industries

Article

...
Total quality control for automotive raw foundry brake disks

Article

...
Glue dispenser route inspection by using computer vision and neural network

Article

Construction of 3D solder paste surfaces using multi-projection images

Content Provider Springer Nature Link
Author Kuo, Chung Hsien Yang, Fang Chung Wing, Jein Jong Yang, Ching Kun
Copyright Year 2005
Abstract This paper aims to develop the 3D surface construction applications for the solder pastes using multi-projection images and the neural network approach. The proposed solution uses the image features of multi-projection angles as the inputs and the laser surface scanning results as the outputs of the neural network model to perform precise 3D solder paste surface construction. In this manner, the proposed methodology can measure the 3D solder paste surfaces in a precise way like the laser scanning results. The advantages of this work is to use a low cost and high speed image solution to overcome the disadvantages of high cost and slow speed laser solution while the inspection accuracy is maintained. The multi-projection images are captured from the multi-channel light source and the coaxial light source to perform precise and efficient inspections, respectively. On the other hand, the back-propagation (BP) neural network approach is used to construct the 3D solder paste surface models for various solder pad geometries. Finally, the proposed system was experimentally verified. The experimental results showed that the multi-channel light source solution with pad based learning achieves 95% volumetric accuracy in average, and the coaxial light source with sub-area based learning just achieves 80% volumetric accuracy in average when compared to the actual laser surface scanning.
Starting Page 509
Ending Page 519
Page Count 11
File Format PDF
ISSN 02683768
Journal The International Journal of Advanced Manufacturing Technology
Volume Number 31
Issue Number 5-6
e-ISSN 14333015
Language English
Publisher Springer-Verlag
Publisher Date 2006-01-05
Publisher Place London
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword Automatic optical inspection Neural network Solder paste inspection Surface reconstruction Computer-Aided Engineering (CAD, CAE) and Design Mechanical Engineering Production/Logistics Industrial and Production Engineering
Content Type Text
Resource Type Article
Subject Industrial and Manufacturing Engineering Control and Systems Engineering Mechanical Engineering Computer Science Applications Software
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...