WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. The International Journal of Advanced Manufacturing Technology
  2. The International Journal of Advanced Manufacturing Technology : Volume 33
  3. The International Journal of Advanced Manufacturing Technology : Volume 33, Issue 3-4, June 2007
  4. Cooling in grind-hardening operations
Loading...

Please wait, while we are loading the content...

The International Journal of Advanced Manufacturing Technology : Volume 91
The International Journal of Advanced Manufacturing Technology : Volume 90
The International Journal of Advanced Manufacturing Technology : Volume 89
The International Journal of Advanced Manufacturing Technology : Volume 88
The International Journal of Advanced Manufacturing Technology : Volume 87
The International Journal of Advanced Manufacturing Technology : Volume 86
The International Journal of Advanced Manufacturing Technology : Volume 85
The International Journal of Advanced Manufacturing Technology : Volume 84
The International Journal of Advanced Manufacturing Technology : Volume 83
The International Journal of Advanced Manufacturing Technology : Volume 82
The International Journal of Advanced Manufacturing Technology : Volume 81
The International Journal of Advanced Manufacturing Technology : Volume 80
The International Journal of Advanced Manufacturing Technology : Volume 79
The International Journal of Advanced Manufacturing Technology : Volume 78
The International Journal of Advanced Manufacturing Technology : Volume 77
The International Journal of Advanced Manufacturing Technology : Volume 76
The International Journal of Advanced Manufacturing Technology : Volume 75
The International Journal of Advanced Manufacturing Technology : Volume 74
The International Journal of Advanced Manufacturing Technology : Volume 73
The International Journal of Advanced Manufacturing Technology : Volume 72
The International Journal of Advanced Manufacturing Technology : Volume 71
The International Journal of Advanced Manufacturing Technology : Volume 70
The International Journal of Advanced Manufacturing Technology : Volume 69
The International Journal of Advanced Manufacturing Technology : Volume 68
The International Journal of Advanced Manufacturing Technology : Volume 67
The International Journal of Advanced Manufacturing Technology : Volume 66
The International Journal of Advanced Manufacturing Technology : Volume 65
The International Journal of Advanced Manufacturing Technology : Volume 64
The International Journal of Advanced Manufacturing Technology : Volume 63
The International Journal of Advanced Manufacturing Technology : Volume 62
The International Journal of Advanced Manufacturing Technology : Volume 61
The International Journal of Advanced Manufacturing Technology : Volume 60
The International Journal of Advanced Manufacturing Technology : Volume 59
The International Journal of Advanced Manufacturing Technology : Volume 58
The International Journal of Advanced Manufacturing Technology : Volume 57
The International Journal of Advanced Manufacturing Technology : Volume 56
The International Journal of Advanced Manufacturing Technology : Volume 55
The International Journal of Advanced Manufacturing Technology : Volume 54
The International Journal of Advanced Manufacturing Technology : Volume 53
The International Journal of Advanced Manufacturing Technology : Volume 52
The International Journal of Advanced Manufacturing Technology : Volume 51
The International Journal of Advanced Manufacturing Technology : Volume 50
The International Journal of Advanced Manufacturing Technology : Volume 49
The International Journal of Advanced Manufacturing Technology : Volume 48
The International Journal of Advanced Manufacturing Technology : Volume 47
The International Journal of Advanced Manufacturing Technology : Volume 46
The International Journal of Advanced Manufacturing Technology : Volume 45
The International Journal of Advanced Manufacturing Technology : Volume 44
The International Journal of Advanced Manufacturing Technology : Volume 43
The International Journal of Advanced Manufacturing Technology : Volume 42
The International Journal of Advanced Manufacturing Technology : Volume 41
The International Journal of Advanced Manufacturing Technology : Volume 40
The International Journal of Advanced Manufacturing Technology : Volume 39
The International Journal of Advanced Manufacturing Technology : Volume 38
The International Journal of Advanced Manufacturing Technology : Volume 37
The International Journal of Advanced Manufacturing Technology : Volume 36
The International Journal of Advanced Manufacturing Technology : Volume 35
The International Journal of Advanced Manufacturing Technology : Volume 34
The International Journal of Advanced Manufacturing Technology : Volume 33
The International Journal of Advanced Manufacturing Technology : Volume 33, Issue 11-12, August 2007
The International Journal of Advanced Manufacturing Technology : Volume 33, Issue 9-10, July 2007
The International Journal of Advanced Manufacturing Technology : Volume 33, Issue 7-8, July 2007
The International Journal of Advanced Manufacturing Technology : Volume 33, Issue 5-6, June 2007
The International Journal of Advanced Manufacturing Technology : Volume 33, Issue 3-4, June 2007
Design creativity in product innovation
Cost optimization of submersible motors using a genetic algorithm and a finite element method
Model driven development of distributed control applications
Use of process signals for tool wear progression sensing in drilling small deep holes
Prediction of chip flow angle in orthogonal turning of mild steel by neural network approach
Computer simulation and experimental study of machining deflection due to original residual stress of aerospace thin-walled parts
Experimental verification of numerical predictions for the optimum plunger speed in the slow phase of a high-pressure die casting machine
Thermal analysis of casting dies with local temperature controller
Cooling in grind-hardening operations
Computer-aided cost estimation of weld operations
Investigating the recast layer formed during the laser trepan drilling of Inconel 718 using the Taguchi method
Study on the tolerance allocation optimization by fuzzy-set weight-center evaluation method
A reinforcement learning approach for developing routing policies in multi-agent production scheduling
Set-up time reduction process and integrated predetermined time system MTM-UAS: A study of application in a large size company of automobile industry
A methodology for facilitating reconfiguration in manufacturing: the move towards reconfigurable manufacturing systems
The application of dependency management in an integrated manufacturing network framework
High Performance Cutting
A 3D curvature gouge detection and elimination method for 5-axis CNC milling of curved surfaces
Control of a dual stage magnetostrictive actuator and linear motor feed drive system
Robust regenerative chatter stability in machine tools
Evaluation and modeling of productivity and dynamic capability in high-speed machining centers
An experimental investigation of temperatures during conventional and CBN grinding
Dry grinding by special conditioning
The International Journal of Advanced Manufacturing Technology : Volume 33, Issue 1-2, May 2007
The International Journal of Advanced Manufacturing Technology : Volume 32
The International Journal of Advanced Manufacturing Technology : Volume 31
The International Journal of Advanced Manufacturing Technology : Volume 30
The International Journal of Advanced Manufacturing Technology : Volume 29
The International Journal of Advanced Manufacturing Technology : Volume 28
The International Journal of Advanced Manufacturing Technology : Volume 27
The International Journal of Advanced Manufacturing Technology : Volume 26
The International Journal of Advanced Manufacturing Technology : Volume 25
The International Journal of Advanced Manufacturing Technology : Volume 24
The International Journal of Advanced Manufacturing Technology : Volume 23
The International Journal of Advanced Manufacturing Technology : Volume 22
The International Journal of Advanced Manufacturing Technology : Volume 21
The International Journal of Advanced Manufacturing Technology : Volume 20
The International Journal of Advanced Manufacturing Technology : Volume 19
The International Journal of Advanced Manufacturing Technology : Volume 18
The International Journal of Advanced Manufacturing Technology : Volume 17
The International Journal of Advanced Manufacturing Technology : Volume 16
The International Journal of Advanced Manufacturing Technology : Volume 15
The International Journal of Advanced Manufacturing Technology : Volume 14
The International Journal of Advanced Manufacturing Technology : Volume 13

Similar Documents

...
Grinding wheel effect in the grind-hardening process

Article

...
Numerical and experimental studies on grind-hardening cylindrical surface

Article

...
External grind-hardening forces modelling and experimentation

Article

...
In-process prediction of the hardened layer in cylindrical traverse grind-hardening

Article

...
The study for variable grinding depth to control plane grind-hardening layer depth distribution

Article

...
Plane grind-hardening distortion analysis and the effect to grind-hardening layer

Article

...
Modelling of the hardening and finishing stages of grind-hardened workpieces

Article

...
Experimental and numerical study of grind-hardening-induced residual stresses on AISI 1045 Steel

Article

...
Multi-objective optimisation of surface grinding operations using scatter search approach

Article

Cooling in grind-hardening operations

Content Provider Springer Nature Link
Author Salonitis, Konstantis Chryssolouris, George
Copyright Year 2006
Abstract The grind hardening process utilizes the heat dissipation in the grinding area for inducing metallurgical transformation on the surface of the ground workpiece. The workpiece surface is selectively heated above the austenitisation temperature and subsequently is self-quenched so as to achieve the anticipated surface hardening. In order for self-quenching to occur sufficient material mass must be present to conduct the heat away from the surface. However, in the case of grind-hardening of thin workpieces or cylindrical workpieces of small diameter, the quenching has to be assisted with the application of coolant fluid. In this paper, the utilization of the coolant fluid for the grind-hardening of small diameter cylindrical parts is investigated. The rapid heating of the workpiece and the short austenitising time are taken into consideration both for the estimation of the hardness profile and the hardness penetration depth (HPD). A finite element analysis (FEA) model is developed for this specific case and its predictions are verified experimentally.
Starting Page 285
Ending Page 297
Page Count 13
File Format PDF
ISSN 02683768
Journal The International Journal of Advanced Manufacturing Technology
Volume Number 33
Issue Number 3-4
e-ISSN 14333015
Language English
Publisher Springer-Verlag
Publisher Date 2006-03-30
Publisher Place London
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword Grinding Grind-hardening Heat treatment process Process modeling Surface hardening Computer-Aided Engineering (CAD, CAE) and Design Mechanical Engineering Production/Logistics Industrial and Production Engineering
Content Type Text
Resource Type Article
Subject Industrial and Manufacturing Engineering Control and Systems Engineering Mechanical Engineering Computer Science Applications Software
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...