WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. The International Journal of Advanced Manufacturing Technology
  2. The International Journal of Advanced Manufacturing Technology : Volume 30
  3. The International Journal of Advanced Manufacturing Technology : Volume 30, Issue 7-8, October 2006
  4. An intelligent estimation method for product design time
Loading...

Please wait, while we are loading the content...

The International Journal of Advanced Manufacturing Technology : Volume 91
The International Journal of Advanced Manufacturing Technology : Volume 90
The International Journal of Advanced Manufacturing Technology : Volume 89
The International Journal of Advanced Manufacturing Technology : Volume 88
The International Journal of Advanced Manufacturing Technology : Volume 87
The International Journal of Advanced Manufacturing Technology : Volume 86
The International Journal of Advanced Manufacturing Technology : Volume 85
The International Journal of Advanced Manufacturing Technology : Volume 84
The International Journal of Advanced Manufacturing Technology : Volume 83
The International Journal of Advanced Manufacturing Technology : Volume 82
The International Journal of Advanced Manufacturing Technology : Volume 81
The International Journal of Advanced Manufacturing Technology : Volume 80
The International Journal of Advanced Manufacturing Technology : Volume 79
The International Journal of Advanced Manufacturing Technology : Volume 78
The International Journal of Advanced Manufacturing Technology : Volume 77
The International Journal of Advanced Manufacturing Technology : Volume 76
The International Journal of Advanced Manufacturing Technology : Volume 75
The International Journal of Advanced Manufacturing Technology : Volume 74
The International Journal of Advanced Manufacturing Technology : Volume 73
The International Journal of Advanced Manufacturing Technology : Volume 72
The International Journal of Advanced Manufacturing Technology : Volume 71
The International Journal of Advanced Manufacturing Technology : Volume 70
The International Journal of Advanced Manufacturing Technology : Volume 69
The International Journal of Advanced Manufacturing Technology : Volume 68
The International Journal of Advanced Manufacturing Technology : Volume 67
The International Journal of Advanced Manufacturing Technology : Volume 66
The International Journal of Advanced Manufacturing Technology : Volume 65
The International Journal of Advanced Manufacturing Technology : Volume 64
The International Journal of Advanced Manufacturing Technology : Volume 63
The International Journal of Advanced Manufacturing Technology : Volume 62
The International Journal of Advanced Manufacturing Technology : Volume 61
The International Journal of Advanced Manufacturing Technology : Volume 60
The International Journal of Advanced Manufacturing Technology : Volume 59
The International Journal of Advanced Manufacturing Technology : Volume 58
The International Journal of Advanced Manufacturing Technology : Volume 57
The International Journal of Advanced Manufacturing Technology : Volume 56
The International Journal of Advanced Manufacturing Technology : Volume 55
The International Journal of Advanced Manufacturing Technology : Volume 54
The International Journal of Advanced Manufacturing Technology : Volume 53
The International Journal of Advanced Manufacturing Technology : Volume 52
The International Journal of Advanced Manufacturing Technology : Volume 51
The International Journal of Advanced Manufacturing Technology : Volume 50
The International Journal of Advanced Manufacturing Technology : Volume 49
The International Journal of Advanced Manufacturing Technology : Volume 48
The International Journal of Advanced Manufacturing Technology : Volume 47
The International Journal of Advanced Manufacturing Technology : Volume 46
The International Journal of Advanced Manufacturing Technology : Volume 45
The International Journal of Advanced Manufacturing Technology : Volume 44
The International Journal of Advanced Manufacturing Technology : Volume 43
The International Journal of Advanced Manufacturing Technology : Volume 42
The International Journal of Advanced Manufacturing Technology : Volume 41
The International Journal of Advanced Manufacturing Technology : Volume 40
The International Journal of Advanced Manufacturing Technology : Volume 39
The International Journal of Advanced Manufacturing Technology : Volume 38
The International Journal of Advanced Manufacturing Technology : Volume 37
The International Journal of Advanced Manufacturing Technology : Volume 36
The International Journal of Advanced Manufacturing Technology : Volume 35
The International Journal of Advanced Manufacturing Technology : Volume 34
The International Journal of Advanced Manufacturing Technology : Volume 33
The International Journal of Advanced Manufacturing Technology : Volume 32
The International Journal of Advanced Manufacturing Technology : Volume 31
The International Journal of Advanced Manufacturing Technology : Volume 30
The International Journal of Advanced Manufacturing Technology : Volume 30, Issue 11-12, October 2006
The International Journal of Advanced Manufacturing Technology : Volume 30, Issue 9-10, October 2006
The International Journal of Advanced Manufacturing Technology : Volume 30, Issue 7-8, October 2006
Managing modularity in product family design with functional modeling
Product modeling for multidisciplinary collaborative design
An intelligent estimation method for product design time
Feature signature prediction of a boring process using neural network modeling with confidence bounds
Life prediction system using a tool’s geometric shape for high-speed milling
CAE-Based six sigma robust optimization for deep- drawing process of sheet metal
Further observations and review of numerical simulations of sheet metal punching
FE numerical simulation of mould temperature field during the continuous casting of steel
Experimental investigations into forces acting during a magnetic abrasive finishing process
Practical method to locate the initial weld position using visual technology
Development of mathematical models for prediction of weld bead geometry in cladding by flux cored arc welding
The selection of the optimal design parameters applied to the gas-assisted injection mould of an L-shape plates design
Rapid prototyping machine based on ceramic laser fusion
Nonlinear friction compensation in mechatronic servo systems
Investigation of the forward kinematics of the Gough‐Stewart manipulator with natural coordinates
Optimal allocation of index positions on tool magazines using an ant colony algorithm
Simple heuristic to minimize total tardiness in a single machine scheduling problem
Production-flow-value-based job dispatching method for semiconductor manufacturing
Equipment health diagnosis and prognosis using hidden semi-Markov models
Developing a diagnostic system through the integration of ant colony optimization systems and case-based reasoning
The practices of integrating manufacturing execution system and six sigma methodology
Knowledge induction from uncertain information systems
Applications of equivalent components concept on the singularity analysis of TRR–XY hybrid parallel kinematic machine tools
The International Journal of Advanced Manufacturing Technology : Volume 30, Issue 5-6, September 2006
The International Journal of Advanced Manufacturing Technology : Volume 30, Issue 3-4, September 2006
The International Journal of Advanced Manufacturing Technology : Volume 30, Issue 1-2, August 2006
The International Journal of Advanced Manufacturing Technology : Volume 29
The International Journal of Advanced Manufacturing Technology : Volume 28
The International Journal of Advanced Manufacturing Technology : Volume 27
The International Journal of Advanced Manufacturing Technology : Volume 26
The International Journal of Advanced Manufacturing Technology : Volume 25
The International Journal of Advanced Manufacturing Technology : Volume 24
The International Journal of Advanced Manufacturing Technology : Volume 23
The International Journal of Advanced Manufacturing Technology : Volume 22
The International Journal of Advanced Manufacturing Technology : Volume 21
The International Journal of Advanced Manufacturing Technology : Volume 20
The International Journal of Advanced Manufacturing Technology : Volume 19
The International Journal of Advanced Manufacturing Technology : Volume 18
The International Journal of Advanced Manufacturing Technology : Volume 17
The International Journal of Advanced Manufacturing Technology : Volume 16
The International Journal of Advanced Manufacturing Technology : Volume 15
The International Journal of Advanced Manufacturing Technology : Volume 14
The International Journal of Advanced Manufacturing Technology : Volume 13

Similar Documents

...
An intelligent production workflow mining system for continual quality enhancement

Article

...
A rough set enhanced fuzzy approach to quality function deployment

Article

...
A neural network-based build time estimator for layer manufactured objects

Article

...
Job cycle time estimation in a wafer fabrication factory with a bi-directional classifying fuzzy-neural approach

Article

...
A study on an organization pattern of product development team

Article

...
Machine degradation analysis using fuzzy CMAC neural network approach

Article

...
Development of a rough set-based fuzzy neural network for online monitoring of microdrilling

Article

...
Fuzzy PROMETHEE GDSS for technical requirements ranking in HOQ

Article

...
An optimization method for components selection using quality function deployment

Article

An intelligent estimation method for product design time

Content Provider Springer Nature Link
Author Xu, D. Yan, H. S.
Copyright Year 2005
Abstract The planning and control of product development is based on the pre-estimation of product design time (PDT). In order to optimize the product development process (PDP), it is necessary for managers and designers to evaluate design time/effort at the early stage of product development. However, in systemic analytical methods for PDT this is somewhat lacking. This paper explores an intelligent method to evaluate the PDT regarding this problem. At the early development stage, designers lack sufficient product information and have difficulty in determining PDT via subjective evaluation. Thus, a fuzzy measurable house of quality (FM-HOQ) model is proposed to provide measurable engineering information. Quality function deployment (QFD) is combined with a mapping pattern of “function→principle→structure” to extract product characteristics from customer demands. Then, a fuzzy neural network (FNN) model is built to fuse data and realize the estimation of PDT, which makes use of fuzzy comprehensive evaluation to simplify structure. In a word, the whole estimation method consists of four steps: time factors identification, product characteristics extraction by QFD and function mapping pattern, FNN learning, and PDT estimation. Finally, to illustrate the procedure of the estimation method, the case of injection mold design is studied. The results of experiments show that the intelligent estimation method is feasible and effective. This paper is developed to provide designers with PDT information to help them in optimizing PDP.
Starting Page 601
Ending Page 613
Page Count 13
File Format PDF
ISSN 02683768
Journal The International Journal of Advanced Manufacturing Technology
Volume Number 30
Issue Number 7-8
e-ISSN 14333015
Language English
Publisher Springer-Verlag
Publisher Date 2005-12-02
Publisher Place London
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword Product design Time estimation House of quality Fuzzy measure Fuzzy neural network Computer-Aided Engineering (CAD, CAE) and Design Mechanical Engineering Production/Logistics Industrial and Production Engineering
Content Type Text
Resource Type Article
Subject Industrial and Manufacturing Engineering Control and Systems Engineering Mechanical Engineering Computer Science Applications Software
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...