Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Mohammadi, A. Floryan, J. M. |
| Copyright Year | 2014 |
| Abstract | The effects of longitudinal grooves on the flow resistance in a channel where the flow is driven by movement of one of the walls and modified by a streamwise pressure gradient have been studied. The reducedorder geometrymodel has been used to extract geometric features that are hydraulically relevant. Three distinct zones leading to the reduced resistance have been identified, depending on the flow pressure gradient and the groove wave number. Two of these zones correspond to grooves with long wavelengths and one to grooves with short wavelengths. Optimization has been used to determine shapes that provide the largest flow rate. In the case of the long-wavelength grooves, the optimal shapes depend on the constraints. These shapes are well approximated by a certain universal trapezoid for grooves that have the same height and depth. There exists an optimum depth which, combined with the corresponding shape, defines the optimal geometry in the case of the unequal-depth grooves; this shape is well approximated by a Gaussian function. No optimal shape exists for the short-wavelength grooves if the groove amplitude is sufficiently small; the shortest admissible wavelength dominates system performance under such conditions. The most effective groove wave number does exist for higher grooves, but the optimal shape cannot be determined due to numerical limitations. |
| Starting Page | 549 |
| Ending Page | 572 |
| Page Count | 24 |
| File Format | |
| ISSN | 09354964 |
| Journal | Theoretical and Computational Fluid Dynamics |
| Volume Number | 28 |
| Issue Number | 5 |
| e-ISSN | 14322250 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2014-10-10 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Drag reduction Laminar flows Channel flows Longitudinal grooves Optimization Engineering Fluid Dynamics Classical Continuum Physics Computational Science and Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Fluid Flow and Transfer Processes Condensed Matter Physics Computational Mechanics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|