Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Chandran, Nishanth Garay, Juan A. Ostrovsky, Rafail |
| Copyright Year | 2013 |
| Abstract | We consider secure multi-party computation (MPC) in a setting where the adversary can separately corrupt not only the parties (nodes) but also the communication channels (edges), and can furthermore choose selectively and adaptively which edges or nodes to corrupt. Note that if an adversary corrupts an edge, even if the two nodes that share that edge are honest, the adversary can control the link and thus deliver wrong messages to both players. We consider this question in the information-theoretic setting, and require security against a computationally unbounded adversary.In a fully connected network the above question is simple (and we also provide an answer that is optimal up to a constant factor). What makes the problem more challenging is to consider the case of sparse networks. Partially connected networks are far more realistic than fully connected networks, which led Garay and Ostrovsky [Eurocrypt’08] to formulate the notion of (unconditional) almost everywhere (a.e.) secure computation in the node-corruption model, i.e., a model in which not all pairs of nodes are connected by secure channels and the adversary can corrupt some of the nodes (but not the edges). In such a setting, MPC among all honest nodes cannot be guaranteed due to the possible poor connectivity of some honest nodes with other honest nodes, and hence some of them must be “given up” and left out of the computation. The number of such nodes is a function of the underlying communication graph and the adversarial set of nodes.In this work we introduce the notion of almost-everywhere secure computation with edge corruptions, which is exactly the same problem as described above, except that we additionally allow the adversary to completely control some of the communication channels between two correct nodes—i.e., to “corrupt” edges in the network. While it is easy to see that an a.e. secure computation protocol for the original node-corruption model is also an a.e. secure computation protocol tolerating edge corruptions (albeit for a reduced fraction of edge corruptions with respect to the bound for node corruptions), no polynomial-time protocol is known in the case where a constant fraction of the edges can be corrupted (i.e., the maximum that can be tolerated) and the degree of the network is sublinear.We make progress on this front, by constructing graphs of degree O(n ϵ ) (for arbitrary constant 0<ϵ<1) on which we can run a.e. secure computation protocols tolerating a constant fraction of adversarial edges. The number of given-up nodes in our construction is μn (for some constant 0<μ<1 that depends on the fraction of corrupted edges), which is also asymptotically optimal. |
| Starting Page | 745 |
| Ending Page | 768 |
| Page Count | 24 |
| File Format | |
| ISSN | 09332790 |
| Journal | Journal of Cryptology |
| Volume Number | 28 |
| Issue Number | 4 |
| e-ISSN | 14321378 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2013-12-19 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Almost-everywhere secure computation bounded-degree network Secure message transmission Byzantine agreement Coding and Information Theory Computational Mathematics and Numerical Analysis Combinatorics Probability Theory and Stochastic Processes Communications Engineering, Networks |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Computer Science Applications Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|