Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | Springer Nature Link |
---|---|
Author | Raiser, Stefan Lughofer, Edwin Eitzinger, Christian Smith, James Edward |
Copyright Year | 2009 |
Abstract | In surface inspection applications, the main goal is to detect all areas which might contain defects or unacceptable imperfections, and to classify either every single ‘suspicious’ region or the investigated part as a whole. After an image is acquired by the machine vision hardware, all pixels that deviate from a pre-defined ‘ideal’ master image are set to a non-zero value, depending on the magnitude of deviation. This procedure leads to so-called “contrast images”, in which accumulations of bright pixels may appear, representing potentially defective areas. In this paper, various methods are presented for grouping these bright pixels together into meaningful objects, ranging from classical image processing techniques to machine-learning-based clustering approaches. One important issue here is to find reasonable groupings even for non-connected and widespread objects. In general, these objects correspond either to real faults or to pseudo-errors that do not affect the surface quality at all. The impact of different extraction methods on the accuracy of image classifiers will be studied. The classifiers are trained with feature vectors calculated for the extracted objects found in images labeled by the user and showing surfaces of production items. In our investigation artificially created contrast images will be considered as well as real ones recorded on-line at a CD imprint production and at an egg inspection system. |
Starting Page | 627 |
Ending Page | 641 |
Page Count | 15 |
File Format | |
ISSN | 09328092 |
Journal | Machine Vision and Applications |
Volume Number | 21 |
Issue Number | 5 |
e-ISSN | 14321769 |
Language | English |
Publisher | Springer-Verlag |
Publisher Date | 2009-08-27 |
Publisher Place | Berlin/Heidelberg |
Access Restriction | One Nation One Subscription (ONOS) |
Subject Keyword | Surface inspection Contrast images Object extraction Clustering Image classifiers Communications Engineering, Networks Image Processing and Computer Vision Pattern Recognition |
Content Type | Text |
Resource Type | Article |
Subject | Computer Vision and Pattern Recognition Computer Science Applications Software Hardware and Architecture |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|