Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | McClenaghan, Sean H. Lentz, David R. Martin, Jillian Diegor, Wilfredo G. |
| Copyright Year | 2009 |
| Abstract | The 329-Mt Brunswick No. 12 volcanogenic massive sulfide deposit (total resource of 163 Mt at 10.4% Zn, 4.2% Pb, 0.34% Cu, and 115 g/t Ag) is hosted within a Middle Ordovician bimodal volcanic and sedimentary sequence. Massive sulfides are for the most part syngenetic, and the bulk of the sulfide ore occurs as a Zn–Pb-rich banded sulfide facies that forms an intimate relationship with a laterally extensive Algoma-type iron formation and defines the Brunswick Horizon. Zone refining of stratiform sulfides is considered to have resulted in the development of a large replacement-style Cu-rich basal sulfide facies, which is generally confined between the banded sulfide facies and an underlying stringer sulfide zone. Complex polyphase deformation and associated lower- to upper-greenschist facies regional metamorphism is responsible for the present geometry of the deposit. Textural modification has resulted in a general increase in grain size through the development of pyrite and arsenopyrite porphyroblasts, which tend to overprint primary mineral assemblages. Despite the heterogeneous ductile deformation, primary features have locally been preserved, such as fine-grained colloform pyrite and base and precious metal zonation within the Main Zone. Base metal and trace element abundances in massive sulfides from the Brunswick No. 12 deposit indicate two distinct geochemical associations. The basal sulfide facies, characterized by a proximal high-temperature hydrothermal signature (Cu–Co–Bi–Se), contains generally low Au contents averaging 0.39 ppm (n = 34). Conversely, Au is enriched in the banded sulfide facies, averaging 1.1 ppm Au (n = 21), and is associated with an exhalative suite of elements (Zn–Pb–As–Sb–Ag–Sn). Finely laminated sulfide lenses hosted by iron formation at the north end of the Main Zone are further enriched in Au, averaging 1.7 ppm (n = 41) and ranging up to 8.2 ppm. Laser ablation inductively coupled plasma-mass spectrometry (ICP-MS) analyses of pyrite (n = 97) from the north end of the Main Zone average 2.6 ppm Au and range from the detection limit (0.015 ppm) to 21 ppm. Overall, these analyses reveal a distinct Au–Sb–As–Ag–Hg–Mn association within pyrite grains. Gold is strongly enriched in large pseudo-primary masses of pyrite that exhibit relict banding and fine-grained cores; smaller euhedral pyrite porphyroblasts, and euhedral rims of metamorphic origin surrounding the pyrite masses, contain much less Au, Sb, Ag, As, and Sn. Arsenopyrite, occurring chiefly as late porphyroblasts, contains less Au, averaging 1.0 ppm and ranging from the detection limit (0.027 ppm) to 6.9 ppm. Depth profiles for single-spot laser ablation ICP-MS analyses of pyrite and arsenopyrite display uniform values of Au and an absence of discrete microscopic inclusions of Au-bearing minerals, which is consistent with chemically bonded Au in the sulfide structure. The pervasive correlation of Au with Sn in the Zn–Pb-rich banded sulfide facies suggests similar hydrothermal behavior during the waxing stages of deposition on the seafloor. Under high temperature (>350ºC) and moderate- to low-pH conditions, Au and Sn in hydrothermal fluids would be transported as chlorocomplexes. An abrupt decrease in temperature and aH2S, accompanied by an increase in fO2 and pH during mixing with seawater, would lead to the simultaneous destabilization of both Au and Sn chlorocomplexes. The enrichment of Au in fine-grained laminated sulfides on the periphery of the deposit, accompanied by sporadic occurrences of barite and Fe-poor sphalerite, supports lower hydrothermal fluid temperatures analogous to white smoker activity on the flanks of a large volcanogenic massive sulfide system. In lower temperature (<350ºC) and mildly acidic hydrothermal fluids, Au would be transported by thiocomplexes, which exhibit multifunctional (retrograde–prograde) solubility and a capacity to mobilize Au to the outer parts of the sulfide mound. The sluggish nature of this low-temperature venting together with larger variations in ambient fO2 could lead to a sharp enrichment of Au towards the stratigraphic hanging wall of massive sulfide deposits. |
| Starting Page | 523 |
| Ending Page | 557 |
| Page Count | 35 |
| File Format | |
| ISSN | 00264598 |
| Journal | Mineralium Deposita |
| Volume Number | 44 |
| Issue Number | 5 |
| e-ISSN | 14321866 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2009-04-09 |
| Publisher Place | Berlin/Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Brunswick No. 12 Bathurst Mining Camp Canada Volcanogenic Massive Sulfide Gold Laser Ablation ICP-MS Mineral Resources Mineralogy Geology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Geophysics Economic Geology Geochemistry and Petrology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|