Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Williams, Nicholas C. |
| Copyright Year | 2006 |
| Abstract | The Callie deposit is the largest (6.0 Moz Au) of several gold deposits in the Dead Bullock Soak goldfield of the Northern Territory’s Tanami Region, 550 km northwest of Alice Springs. The Callie ore lies within corridors, up to 180 m wide, of sheeted en echelon quartz veins where they intersect the 500-m-wide hinge of an ESE-plunging F1 anticlinorium. The host rocks are the Blake beds, of the Paleoproterozoic Dead Bullock Formation, which consist of a > 350-m-thick sequence of lower greenschist facies graphitic turbidites and mudstones overlying in excess of 100 m of thickly bedded siltstones and fine sandstones. The rocks are Fe-rich and dominated by assemblages of chlorite and biotite, both of which are of hydrothermal and metamorphic origin. A fundamental characteristic of the hydrothermal alteration is the removal of graphite, a process which is associated with bleaching and the development of bedding-parallel bands of coarse biotite augen. Gold is found only in quartz veins and only where they cut decarbonized chloritic rock with abundant biotite augen and no sulfide minerals. Auriferous quartz veins differ from barren quartz veins by the presence of ilmenite, apatite, xenotime, and gold and the absence of sulfide minerals. The assemblage of gold–ilmenite–apatite–xenotime indicates a linked genesis and mobility of Ti, P, and Y in the mineralizing fluids. Geochemical analysis of samples throughout the deposit shows that gold only occurs in sedimentary rocks with high FeO/(FeO+Fe2O3) and low C/(C+CO2) ratios (> 0.8 and < 0.2, respectively). This association can be explained by reactions that convert C from reduced graphitic host rocks into CO2 and reduce ferric iron in the host rocks to ferrous iron in biotite and chlorite. These reactions would increase the CO2 content of the fluid, facilitating the transport of Ti, P, and Y from the host rocks into the veins. Both CO2 and CH4 produced by reaction of H2O with graphite, effervesced under the lower confining pressures in the veins. This would have partitioned H2S into the vapor phase, destabilizing Au–bisulfide complexes; the loss of CO2 and H2S from the aqueous phase caused precipitation of gold, ilmenite, apatite, and xenotime. It is proposed that this process was the main control on gold precipitation. Oxidization of iron in the very reduced wall rocks, resulting in reduction of the fluid, provided a second mechanism of gold precipitation in previously decarbonized rocks, contributing to the high grades in some samples. Although sulfide minerals, especially arsenopyrite, did form during the hydrothermal event, host rock sulfidation reactions did not play a role in gold precipitation because gold is absent near rocks or veins containing sulfide minerals. Sulfide minerals likely formed by different mechanisms from those associated with gold deposition. Both the fold architecture and subsequent spatially coincident sinistral semibrittle shearing ensured that the ore fluids were strongly focused into the hinges of the anticlines. Within the anticlines, a reactive cap of fine-grained, graphitic, reduced Fe-rich turbidites above more permeable siltstones and fine sandstones impeded fluid flow ensuring efficient removal of graphite, and the associated effervescence of CO2 from the fluid caused the precipitation of gold. Exploration for similar deposits should focus on the intersection of east–west shear zones with folds and Fe-rich graphitic host rocks. |
| Starting Page | 65 |
| Ending Page | 87 |
| Page Count | 23 |
| File Format | |
| ISSN | 00264598 |
| Journal | Mineralium Deposita |
| Volume Number | 42 |
| Issue Number | 1 |
| e-ISSN | 14321866 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2006-10-03 |
| Publisher Place | Berlin/Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Gold deposits Tanami Region Quartz veins Graphite Geochemistry Mineralogy Mineral Resources Geology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Geophysics Economic Geology Geochemistry and Petrology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|