Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Gusev, A. A. |
| Copyright Year | 2014 |
| Abstract | Since its formulation in 1967–1970, the classical ω −2 model of earthquake source spectrum awaits a consistent theoretical foundation. To obtain one, stochastic elements are incorporated both into the final structure of the fault and into the mode of rupture propagation. The main components of the proposed “doubly stochastic” model are: (1) the Andrews’s concept, that local stress drop over a fault is a random self-similar field; (2) the concept of rupture with running slip pulse, after Heaton; (3) the hypothesis that a rupture front is a tortuous, multiply connected (“lacy”) fractal polyline that occupies a strip of finite width close to the slip-pulse width; and (4) the assumption that the propagation distance of fault-guided, mostly Rayleigh waves from a failing spot on a fault is determined by the slip-pulse width. Waveforms produced by this model are determined based on the fault asperity failure model after Das and Kostrov. Properties of the model are studied by numerical experiments. At high frequency, simulated source spectra behave as ω −2, and acceleration spectra are flat. Their level, at a given seismic moment and rms stress drop, is inversely related to the relative width of the slip pulse. When this width is relatively low, a well-defined second corner frequency (lower cutoff of acceleration spectrum) is seen. The model shows clear dependence of propagation-related directivity on frequency. Between the first and the second corner frequency, amplitude spectra are strongly enhanced for the forward direction; whereas, above the second corner frequency, directivity is significantly reduced. Still, it is not inhibited totally, suggesting incomplete incoherence of the simulated radiator at high frequencies. |
| Starting Page | 2581 |
| Ending Page | 2599 |
| Page Count | 19 |
| File Format | |
| ISSN | 00334553 |
| Journal | Pure and applied geophysics |
| Volume Number | 171 |
| Issue Number | 10 |
| e-ISSN | 14209136 |
| Language | English |
| Publisher | Springer Basel |
| Publisher Date | 2014-02-11 |
| Publisher Place | Basel |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Self-similar random stress drop field fractal acceleration slip pulse random rupture front frequency-dependent directivity Geophysics/Geodesy |
| Content Type | Text |
| Resource Type | Article |
| Subject | Geochemistry and Petrology Geophysics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|