Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Buffoni, B. |
| Copyright Year | 2011 |
| Abstract | In a region D in $${\mathbb{R}^2}$$ or $${\mathbb{R}^3}$$ , the classical Euler equation for the regular motion of an inviscid and incompressible fluid of constant density is given by $$\partial_t v+(v\cdot \nabla_x)v=-\nabla_x p, {\rm div}_x v=0,$$ where v(t, x) is the velocity of the particle located at $${x\in D}$$ at time t and $${p(t,x)\in\mathbb{R}}$$ is the pressure. Solutions v and p to the Euler equation can be obtained by solving $$\left\{\begin{array}{l} \nabla_x\left\{\partial_t\phi(t,x,a) + p(t,x)+(1/2)|\nabla_x\phi(t,x,a)|^2 \right\}=0\,{\rm at}\,a=\kappa(t,x),\\ v(t,x)=\nabla_x \phi(t,x,a)\,{\rm at}\,a=\kappa(t,x), \\ \partial_t\kappa(t,x)+(v\cdot\nabla_x)\kappa(t,x)=0, \\ {\rm div}_x v(t,x)=0, \end{array}\right. \quad\quad\quad\quad\quad(0.1)$$ where $$\phi:\mathbb{R}\times D\times \mathbb{R}^l\rightarrow\mathbb{R}\,{\rm and}\, \kappa:\mathbb{R}\times D \rightarrow \mathbb{R}^l$$ are additional unknown mappings (l ≥ 1 is prescribed). The third equation in the system says that $${\kappa\in\mathbb{R}^l}$$ is convected by the flow and the second one that $${\phi}$$ can be interpreted as some kind of velocity potential. However vorticity is not precluded thanks to the dependence on a. With the additional condition κ(0, x) = x on D (and thus l = 2 or 3), this formulation was developed by Brenier (Commun Pure Appl Math 52:411–452, 1999) in his Eulerian–Lagrangian variational approach to the Euler equation. He considered generalized flows that do not cross $${\partial D}$$ and that carry each “particle” at time t = 0 at a prescribed location at time t = T > 0, that is, κ(T, x) is prescribed in D for all $${x\in D}$$ . We are concerned with flows that are periodic in time and with prescribed flux through each point of the boundary $${\partial D}$$ of the bounded region D (a two- or three-dimensional straight pipe). More precisely, the boundary condition is on the flux through $${\partial D}$$ of particles labelled by each value of κ at each point of $${\partial D}$$ . One of the main novelties is the introduction of a prescribed “generalized” Bernoulli’s function $${H:\mathbb{R}^l\rightarrow \mathbb{R}}$$ , namely, we add to (0.1) the requirement that $$\partial_t\phi(t,x,a) +p(t,x)+(1/2)|\nabla_x\phi(t,x,a)|^2=H(a)\,{\rm at}\,a=\kappa(t,x)\quad\quad\quad\quad\quad(0.2)$$ with $${\phi,p,\kappa}$$ periodic in time of prescribed period T > 0. Equations (0.1) and (0.2) have a geometrical interpretation that is related to the notions of “Lamb’s surfaces” and “isotropic manifolds” in symplectic geometry. They may lead to flows with vorticity. An important advantage of Brenier’s formulation and its present adaptation consists in the fact that, under natural hypotheses, a solution in some weak sense always exists (if the boundary conditions are not contradictory). It is found by considering the functional $$(\kappa,v)\rightarrow \int\limits_{0}^T \int\limits_D\left\{\frac 1 2 |v(t,x)|^2+H(\kappa(t,x))\right\}dt\, dx$$ defined for κ and v that are T-periodic in t, such that $$\partial_t\kappa(t,x)+(v\cdot\nabla_x)\kappa(t,x)=0, {\rm div}_x v(t,x)=0,$$ and such that they satisfy the boundary conditions. The domain of this functional is enlarged to some set of vector measures and then a minimizer can be obtained. For stationary planar flows, the approach is compared with the following standard minimization method: to minimize $$\int\limits_{]0,L[\times]0,1[} \{(1/2)|\nabla \psi|^2+H(\psi)\}dx\,{\rm for}\,\psi\in W^{1,2}(]0,L[\times]0,1[)$$ under appropriate boundary conditions, where ψ is the stream function. For a minimizer, corresponding functions $${\phi}$$ and κ are given in terms of the stream function ψ. |
| Ending Page | 528 |
| Page Count | 28 |
| Starting Page | 501 |
| File Format | |
| ISSN | 14226928 |
| e-ISSN | 14226952 |
| Journal | Journal of Mathematical Fluid Mechanics |
| Issue Number | 3 |
| Volume Number | 14 |
| Language | English |
| Publisher | SP Birkhäuser Verlag Basel |
| Publisher Date | 2011-10-27 |
| Publisher Place | Basel |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Primal and dual problems Mathematical Methods in Physics Variational methods Fluid- and Aerodynamics Boundary conditions Generalized flows Classical Continuum Physics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Mathematical Physics Condensed Matter Physics Computational Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|