Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Society for Industrial and Applied Mathematics (SIAM) |
|---|---|
| Author | Ben-Or, Michael Aharonov, Dorit |
| Copyright Year | 2008 |
| Abstract | This paper shows that quantum computation can be made fault-tolerant against errors and inaccuracies when $\eta$, the probability for an error in a qubit or a gate, is smaller than a constant threshold $\eta_c$. This result improves on Shor's result [Proceedings of the 37th Symposium on the Foundations of Computer Science, IEEE, Los Alamitos, CA, 1996, pp. 5665], which shows how to perform fault-tolerant quantum computation when the error rate $\eta$ decays polylogarithmically with the size of the computation, an assumption which is physically unreasonable. The cost of making the quantum circuit fault-tolerant in our construction is polylogarithmic in time and space. Our result holds for a very general local noise model, which includes probabilistic errors, decoherence, amplitude damping, depolarization, and systematic inaccuracies in the gates. Moreover, we allow exponentially decaying correlations between the errors both in space and in time. Fault-tolerant computation can be performed with any universal set of gates. The result also holds for quantum particles with $p>2$ states, namely, p-qudits, and is also generalized to one-dimensional quantum computers with only nearest-neighbor interactions. No measurements, or classical operations, are required during the quantum computation. We estimate the threshold of our construction to be $\eta_c\simeq 10^{-6}$, in the best case. By this we show that local noise is in principle not an obstacle for scalable quantum computation. The main ingredient of our proof is the computation on states encoded by a quantum error correcting code (QECC). To this end we introduce a special class of CalderbankShorSteane (CSS) codes, called polynomial codes (the quantum analogue of ReedSolomon codes). Their nice algebraic structure allows all of the encoded gates to be transversal. We also provide another version of the proof which uses more general CSS codes, but its encoded gates are slightly less elegant. To achieve fault tolerance, we encode the quantum circuit by another circuit by using one of these QECCs. This step is repeated polyloglog many times, each step slightly improving the effective error rate, to achieve the desired reliability. The resulting circuit exhibits a hierarchical structure, and for the analysis of its robustness we borrow terminology from Khalfin and Tsirelson [Found. Phys., 22 (1992), pp. 879948] and Gcs [Advances in Computing Research: A Research Annual: Randomness and Computation, JAI Press, Greenwich, CT, 1989]. The paper is to a large extent self-contained. In particular, we provide simpler proofs for many of the known results we use, such as the fact that it suffices to correct for bit-flips and phase-flips, the correctness of CSS codes, and the fact that two-qubit gates are universal, together with their extensions to higher-dimensional particles. We also provide full proofs of the universality of the sets of gates we use (the proof of universality was missing in Shor's paper). This paper thus provides a self-contained and complete proof of universal fault-tolerant quantum computation in the presence of local noise. |
| Starting Page | 1207 |
| Ending Page | 1282 |
| Page Count | 76 |
| File Format | |
| ISSN | 00975397 |
| DOI | 10.1137/S0097539799359385 |
| e-ISSN | 10957111 |
| Journal | SIAM Journal on Computing (SMJCAT) |
| Issue Number | 4 |
| Volume Number | 38 |
| Language | English |
| Publisher | Society for Industrial and Applied Mathematics |
| Publisher Date | 2008-07-23 |
| Access Restriction | Subscribed |
| Subject Keyword | universal set of gates Quantum computation quantum fault tolerance noise and decoherence polynomial codes quantum ReedSolomon codes General quantum error correction quantum computation density matrices concatenated codes |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mathematics Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|