Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Society for Industrial and Applied Mathematics (SIAM) |
|---|---|
| Author | Yannakakis, Mihalis Etessami, Kousha |
| Copyright Year | 2010 |
| Abstract | We reexamine what it means to compute Nash equilibria and, more generally, what it means to compute a fixed point of a given Brouwer function, and we investigate the complexity of the associated problems. Specifically, we study the complexity of the following problem: given a finite game, $\Gamma$, with 3 or more players, and given $\epsilon>0$, compute an approximation within $\epsilon$ of some (actual) Nash equilibrium. We show that approximation of an actual Nash equilibrium, even to within any nontrivial constant additive factor $\epsilon<1/2$ in just one desired coordinate, is at least as hard as the long-standing square-root sum problem, as well as a more general arithmetic circuit decision problem that characterizes P-time in a unit-cost model of computation with arbitrary precision rational arithmetic; thus, placing the approximation problem in P, or even NP, would resolve major open problems in the complexity of numerical computation. We show similar results for market equilibria: it is hard to estimate with any nontrivial accuracy the equilibrium prices in an exchange economy with a unique equilibrium, where the economy is given by explicit algebraic formulas for the excess demand functions. We define a class, FIXP, which captures search problems that can be cast as fixed point computation problems for functions represented by algebraic circuits (straight line programs) over basis $\{+,*,-,/,\max,\min\}$ with rational constants. We show that the (exact or approximate) computation of Nash equilibria for 3 or more players is complete for FIXP. The price equilibrium problem for exchange economies with algebraic demand functions is another FIXP-complete problem. We show that the piecewise linear fragment of FIXP equals PPAD. Many other problems in game theory, economics, and probability theory can be cast as fixed point problems for such algebraic functions. We discuss several important such problems: computing the value of Shapley's stochastic games and the simpler games of Condon, extinction probabilities of branching processes, probabilities of stochastic context-free grammars, and termination probabilities of recursive Markov chains. We show that for some of them, the approximation, or even exact computation, problem can be placed in PPAD, while for others, they are at least as hard as the square-root sum and arithmetic circuit decision problems. |
| Starting Page | 2531 |
| Ending Page | 2597 |
| Page Count | 67 |
| File Format | |
| ISSN | 00975397 |
| DOI | 10.1137/080720826 |
| e-ISSN | 10957111 |
| Journal | SIAM Journal on Computing (SMJCAT) |
| Issue Number | 6 (Special Section On Foundations of Computer Science) |
| Volume Number | 39 |
| Language | English |
| Publisher | Society for Industrial and Applied Mathematics |
| Publisher Date | 2010-04-30 |
| Access Restriction | Subscribed |
| Subject Keyword | Computational difficulty of problems complexity General equilibrium theory Noncooperative games fixed points market equilibria $n$-person games, $n>2$ Symbolic computation and algebraic computation Complexity classes Stochastic games 2-person games Nash equilibria games Fixed-point theorems |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mathematics Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|