Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Society for Industrial and Applied Mathematics (SIAM) |
|---|---|
| Author | Nanongkai, Danupon Henzinger, Monika Krinninger, Sebastian |
| Copyright Year | 2016 |
| Abstract | We study dynamic $(1+\epsilon)$-approximation algorithms for the all-pairs shortest paths problem in unweighted undirected $n$-node $m$-edge graphs under edge deletions. The fastest algorithm for this problem is a randomized algorithm with a total update time of $\tilde O(mn/\epsilon)$ and constant query time by Roditty and Zwick [SIAM J. Comput., 41 (2012), pp. 670--683]. The fastest deterministic algorithm is from a 1981 paper by Even and Shiloach [J. ACM, 28 (1981), pp. 1--4]; it has a total update time of $O(mn^2)$ and constant query time. We improve these results as follows: (1) We present an algorithm with a total update time of $\tilde O(n^{5/2}/\epsilon)$ and constant query time that has an additive error of 2 in addition to the $1+\epsilon$ multiplicative error. This beats the previous $\tilde O(mn/\epsilon)$ time when $m=\Omega(n^{3/2})$. Note that the additive error is unavoidable since, even in the static case, an $O(n^{3-\delta})$-time (a so-called truly subcubic) combinatorial algorithm with $1+\epsilon$ multiplicative error cannot have an additive error less than $2-\epsilon$, unless we make a major breakthrough for Boolean matrix multiplication [D. Dor, S. Halrepin, and U. Zwick, SIAM J. Comput., 29 (2000), pp. 1740--1759] and many other long-standing problems [V. Vassilevska Williams and R. Williams, Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, 2010, pp. 645--654]. The algorithm can also be turned into a $(2+\epsilon)$-approximation algorithm (without an additive error) with the same time guarantees, improving the recent $(3+\epsilon)$-approximation algorithm with $\tilde O(n^{5/2+O(\sqrt{\log{(1/\epsilon)} / \log n})})$ running time of Bernstein and Roditty [Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, 2011, pp. 1355--1365] in terms of both approximation and time guarantees. (2) We present a deterministic algorithm with a total update time of $\tilde O(mn/\epsilon)$ and a query time of $O(\log\log n)$. The algorithm has a multiplicative error of $1+\epsilon $ and gives the first improved deterministic algorithm since 1981. It also answers an open question raised by Bernstein in [Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, 2013, pp. 725--734]. The deterministic algorithm can be turned into a deterministic fully dynamic $ (1+\epsilon) $-approximation with an amortized update time of $ \tilde O (m n / (\epsilon t))$ and a query time of $ \tilde O (t) $ for every $ t \leq \sqrt{n} $. In order to achieve our results, we introduce two new techniques: (i) A monotone Even--Shiloach tree algorithm which maintains a bounded-distance shortest-paths tree on a certain type of emulator called a locally persevering emulator. (ii) A derandomization technique based on moving Even--Shiloach trees as a way to derandomize the standard random set argument. These techniques might be of independent interest. |
| Starting Page | 947 |
| Ending Page | 1006 |
| Page Count | 60 |
| File Format | |
| ISSN | 00975397 |
| DOI | 10.1137/140957299 |
| e-ISSN | 10957111 |
| Journal | SIAM Journal on Computing (SMJCAT) |
| Issue Number | 3 (Special Section on the Fifty-Fourth Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013)) |
| Volume Number | 45 |
| Language | English |
| Publisher | Society for Industrial and Applied Mathematics |
| Publisher Date | 2016-06-29 |
| Access Restriction | Subscribed |
| Subject Keyword | all-pairs shortest paths emulator Nonnumerical algorithms dynamic graph algorithms derandomization Graph algorithms Analysis of algorithms Paths and cycles |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mathematics Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|