Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Society for Industrial and Applied Mathematics (SIAM) |
|---|---|
| Author | Ghili, Saman Iaccarino, Gianluca |
| Copyright Year | 2017 |
| Abstract | In approximating a function by its truncated polynomial chaos expansion (PCE), the target function is projected onto a space spanned by a finite set of orthonormal basis polynomials. Nonintrusive or pseudospectral methods approximate this projection using point evaluations of the target function. One nonintrusive strategy uses the weighted least squares approximation. For this method, like many other nonintrusive methods, the quality of the results depends crucially on the points and weights. The aim of this paper is to find points and weights that lead to excellent accuracy and stability of the weighted least squares approximation. We start by studying the connection between some of the most efficient cubature rules and weighted least squares approximations, and we use this connection to formulate an optimization problem for finding the desired points and weights. We also give a practical algorithm for solving this optimization problem. We then use these points and weights in our numerical experiments to approximate the PCE coefficients for various target functions and polynomial approximation spaces. The results suggest that by using these points and weights, an optimal convergence rate can be achieved even when the number of points scales linearly with (and is only slightly lager than) the dimension of the polynomial space. |
| Sponsorship | Lawrence Livermore National Laboratory |
| Starting Page | A1991 |
| Ending Page | A2019 |
| Page Count | 29 |
| File Format | |
| ISSN | 10648275 |
| DOI | 10.1137/15M1028303 |
| e-ISSN | 10957197 |
| Issue Number | 5 |
| Volume Number | 39 |
| Language | English |
| Publisher | Society for Industrial and Applied Mathematics |
| Publisher Date | 2017-09-14 |
| Access Restriction | Subscribed |
| Subject Keyword | Algorithms for functional approximation pseudospectral approximation uncertainty quantification Approximation by polynomials polynomial chaos expansion least squares approximation cubature rules Quadrature and cubature formulas Multidimensional problems |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Computational Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|