Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Society for Industrial and Applied Mathematics (SIAM) |
|---|---|
| Author | Huybrechs, Daan Vandewalle, Stefan |
| Copyright Year | 2007 |
| Abstract | We consider two-dimensional scattering problems, formulated as an integral equation defined on the boundary of the scattering obstacle. The oscillatory nature of high-frequency scattering problems necessitates a large number of unknowns in classical boundary element methods. In addition, the corresponding discretization matrix of the integral equation is dense. We formulate a boundary element method with basis functions that incorporate the asymptotic behavior of the solution at high frequencies. The method exhibits the effectiveness of asymptotic methods at high frequencies with only few unknowns, but retains accuracy for lower frequencies. New in our approach is that we combine this hybrid method with very effective quadrature rules for oscillatory integrals. As a result, we obtain a sparse discretization matrix for the oscillatory problem. Moreover, numerical experiments indicate that the accuracy of the solution actually increases with increasing frequency. The sparse discretization applies to problems where the phase of the solution can be predicted a priori, for example in the case of smooth and convex scatterers. |
| Starting Page | 2305 |
| Ending Page | 2328 |
| Page Count | 24 |
| File Format | |
| ISSN | 10648275 |
| DOI | 10.1137/060651525 |
| e-ISSN | 10957197 |
| Issue Number | 6 |
| Volume Number | 29 |
| Language | English |
| Publisher | Society for Industrial and Applied Mathematics |
| Publisher Date | 2007-10-05 |
| Access Restriction | Subscribed |
| Subject Keyword | integral equations Numerical integration high-frequency scattering oscillatory integrals steepest descent Asymptotic approximations, asymptotic expansions Fredholm integral equations |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Computational Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|