Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Society for Industrial and Applied Mathematics (SIAM) |
|---|---|
| Author | Radhakrishnan, Jaikumar Ta-Shma, Amnon |
| Copyright Year | 2000 |
| Abstract | We show that the size of the smallest depth-two N-superconcentrator is $$ \Theta(N\log^2 N/\log\log N). $$ Before this work, optimal bounds were known for all depths except two. For the upper bound, we build superconcentrators by putting together a small number of disperser graphs; these disperser graphs are obtained using a probabilistic argument. For obtaining lower bounds, we present two different methods. First, we show that superconcentrators contain several disjoint disperser graphs. When combined with the lower bound for disperser graphs of Kovari, Ss, and Turn, this gives an almost optimal lower bound of $\Omega( N (\log N/\log \log N)^2)$ on the size of N-superconcentrators. The second method, based on the work of Hansel, gives the optimal lower bound.The method of Kovari, Ss, and Turn can be extended to give tight lower bounds for extractors, in terms of both the number of truly random bits needed to extract one additional bit and the unavoidable entropy loss in the system. If the input is an n-bit source with min-entropy k and the output is required to be within a distance of $\epsilon$ from uniform distribution, then to extract even one additional bit, one must invest at least $\log(n-k) + 2\log(1/\epsilon) - O(1)$ truly random bits; to obtain m output bits one must invest at least $m-k+2\log(1/\epsilon)-O(1)$. Thus, there is a loss of $2\log(1/\epsilon)$ bits during the extraction. Interestingly, in the case of dispersers this loss in entropy is only about $\log\log (1/\epsilon)$. |
| Starting Page | 2 |
| Ending Page | 24 |
| Page Count | 23 |
| File Format | |
| ISSN | 08954801 |
| DOI | 10.1137/S0895480197329508 |
| e-ISSN | 10957146 |
| Journal | SIAM Journal on Discrete Mathematics (SJDMEC) |
| Issue Number | 1 |
| Volume Number | 13 |
| Language | English |
| Publisher | Society for Industrial and Applied Mathematics |
| Publisher Date | 2006-08-03 |
| Access Restriction | Subscribed |
| Subject Keyword | superconcentrators extractors Applications of graph theory dispersers entropy loss Extremal problems |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|