Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Society for Industrial and Applied Mathematics (SIAM) |
|---|---|
| Author | Scheel, Arnd Lloyd, David J. B. |
| Copyright Year | 2017 |
| Abstract | We study grain boundaries between striped phases in the prototypical Swift--Hohenberg equation. We propose an analytical and numerical far-field-core decomposition that allows us to study existence and bifurcations of grain boundaries analytically and numerically using continuation techniques. This decomposition overcomes problems with computing grain boundaries in a large doubly periodic box with phase conditions. Using the spatially conserved quantities of the time-independent Swift--Hohenberg equation, we show that symmetric grain boundaries must select the marginally zig-zag stable stripes. We find that as the angle between the stripes is decreased, the symmetric grain boundary undergoes a parity-breaking pitchfork bifurcation where dislocations at the grain boundary split into disclination pairs. A plethora of asymmetric grain boundaries (with different angles of the far-field stripes on either side of the boundary) is found and investigated. The energy of the grain boundaries is then mapped out. We find that when the angle between the stripes is greater than a critical angle, the symmetric grain boundary is energetically preferred, while when the angle is less than the critical angle, grain boundaries where stripes on one side are parallel to the interface are energetically preferred. Finally, we propose a classification of grain boundaries that allows us to predict various nonstandard asymmetric grain boundaries. |
| Sponsorship | Faculty Research Support Fund. Westfälische Wilhelms-Universität Münster. DAAD Faculty Research Visit Grant. Institute for Mathematics and Its Applications. London Mathematical Society. National Science Foundation |
| Starting Page | 252 |
| Ending Page | 293 |
| Page Count | 42 |
| File Format | |
| DOI | 10.1137/16M1073212 |
| e-ISSN | 15360040 |
| Issue Number | 1 |
| Volume Number | 16 |
| Language | English |
| Publisher | Society for Industrial and Applied Mathematics |
| Publisher Date | 2017-01-31 |
| Access Restriction | Subscribed |
| Subject Keyword | Pattern formation spatial dynamics grain boundaries Bifurcations and instability continuation |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|