Loading...
Please wait, while we are loading the content...
A Unified Convergence Theory for Newton-Type Methods for Zeros of Nonlinear Operators in Banach Spaces
| Content Provider | Semantic Scholar |
|---|---|
| Author | Wang, Xinghua Li, Chong Lai, Ming-Jun |
| Copyright Year | 2002 |
| Abstract | The paper is concerned with the convergence problem of Newton type methods for finding zeros of nonlinear operators in Banach spaces. Some families of nonlinear operators redefined by different Lipschitz conditions and an “universal constant” is introduced so that unified convergence determination of these methods is established for the defined families. |
| Starting Page | 206 |
| Ending Page | 213 |
| Page Count | 8 |
| File Format | PDF HTM / HTML |
| DOI | 10.1023/A:1021986506085 |
| Volume Number | 42 |
| Alternate Webpage(s) | http://www.math.zju.edu.cn/webpagenew/UploadFiles/AttachFiles/200694144834222.pdf |
| Alternate Webpage(s) | https://doi.org/10.1023/A%3A1021986506085 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |