Loading...
Please wait, while we are loading the content...
Similar Documents
Extremely Large Anthropogenic-Aerosol Contribution to Total Aerosol Load over the Bay of Bengal During Winter Season
| Content Provider | Semantic Scholar |
|---|---|
| Author | Kaskaoutis, Dimitris G. Kharol, Shailesh Kumar Sharma, Anu Rani |
| Copyright Year | 2011 |
| Abstract | Ship-borne observations of spectral aerosol optical depth (AOD) have been carried out over the entire Bay of Bengal (BoB) as part of the W-ICARB cruise campaign during the period 27 December 2008–30 January 2009. The results reveal a pronounced temporal and spatial variability in the optical characteristics of aerosols mainly due to anthropogenic emissions and their dispersion controlled by local meteorology. The highest aerosol amount, with mean AOD500>0.4, being even above 1.0 on specific days, is found close to the coastal regions in the western and northern parts of BoB. In these regions the Ångstr̈om exponent is also found to be high ( ∼1.2–1.25) indicating transport of strong anthropogenic emissions from continental regions, while very high AOD500 (0.39±0.07) andα380−870 values (1.27±0.09) are found over the eastern BoB. Except from the largeα380−870 values, an indication of strong fine-mode dominance is also observed from the AOD curvature, which is negative in the vast majority of the cases, suggesting dominance of an anthropogenic-pollution aerosol type. On the other hand, clean maritime conditions are rather rare over the region, while the aerosol types are further examined through a classification scheme based on the relationship between α anddα. It was found that even for the same α values the fine-mode dominance is larger for higher AODs showing the strong continental influence over the marine environment of Correspondence to: S. Kumar Kharol (shaileshan2000@yahoo.co.in) BoB. Furthermore, there is also an evidence of aerosol-size growth under more turbid conditions indicative of coagulation and/or humidification over specific BoB regions. The results obtained using OPAC model show significant fraction of soot aerosols ( ∼6 %–8 %) over the eastern and northwestern BoB, while coarse-mode sea salt particles are found to dominate in the southern parts of BoB. |
| File Format | PDF HTM / HTML |
| Alternate Webpage(s) | https://www.atmos-chem-phys.net/11/7097/2011/acp-11-7097-2011.pdf |
| Alternate Webpage(s) | https://digitalcommons.chapman.edu/cgi/viewcontent.cgi?article=1244&context=scs_articles&httpsredir=1&referer= |
| Language | English |
| Access Restriction | Open |
| Subject Keyword | Aerosol Dose Form Aerosols Alcoholics Anonymous Atmosphere, planetary Atmosphere, unit of pressure Cellular automaton EMC Atmos Economic Development Emission - Male genitalia finding Ephrin Type-B Receptor 1, human Greater Heating Köppen climate classification Large Meteorology Online public access catalog Particle Size Pushpa Ratna Sagar Soot Spatial variability mixture monsoon |
| Content Type | Text |
| Resource Type | Article |