Loading...
Please wait, while we are loading the content...
Similar Documents
Highly Sensitive Silver Nanorod Arrays for Rapid Surface Enhanced Raman Scattering Detection of Acetamiprid Pesticides
| Content Provider | Semantic Scholar |
|---|---|
| Author | Han, Caiqin Wang, Wen Yu Tao, Liu-Qian Zhang, Wenxin Ingram, Whitney Tian, Kangzhen Liu, Ying Lu, Aixia Wu, Ying Yan, Changchun Qu, Lu-Lu Li, Haitao |
| Copyright Year | 2018 |
| Abstract | The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we developed a rapid and sensitive method to detect acetamiprid pesticide residue based on surface-enhanced Raman scattering. Silver nanorod (AgNR) arrays were fabricated by oblique angle deposition technology and were used as SERS substrates. Prior to detection, the AgNR arrays were cleaned with nitric acid solution or a mixture of methanol and acetone. Compared to the unwashed AgNR arrays, the AgNR arrays washed with methanol and acetone shows a signal enhancement 1000 times greater than the unwashed AgNR array due to the effective removal of the impurities on its surface. The limit of detection of acetamiprid was determined to be 0.05 mg/L. In addition, the molecular structure of acetamiprid was simulated and the corresponding vibration modes of the characteristic bands of acetamiprid were calculated by density function theory. To demonstrate its practical application, the AgNRs array substrates were applied successfully to the rapid identification of acetamiprid residue on a cucumber's surface. These results confirmed possibility of utilizing the AgNRs SERS substrates as a new method for highly sensitive pesticide residue detection. The determination of pesticide residue on agricultural products is increasingly important. Exposure to pesticides can cause severe acute reactions in humans, including aplastic anemia and leukemia. In this work, we developed a rapid and sensitive method to detect acetamiprid pesticide residue based on surface-enhanced Raman scattering. Silver nanorod (AgNR) arrays were fabricated by oblique angle deposition technology and were used as SERS substrates. Prior to detection, the AgNR arrays were cleaned with nitric acid solution or a mixture of methanol and acetone. Compared to the unwashed AgNR arrays, the AgNR arrays washed with methanol and acetone shows a signal enhancement 1000 times greater than the unwashed AgNR array due to the effective removal of the impurities on its surface. The limit of detection of acetamiprid was determined to be 0.05 mg/L. In addition, the molecular structure of acetamiprid was... |
| Starting Page | 152 |
| Ending Page | 158 |
| Page Count | 7 |
| File Format | PDF HTM / HTML |
| Volume Number | 31 |
| Alternate Webpage(s) | http://cjcp.ustc.edu.cn/hxwlxb_cn/ch/reader/create_pdf.aspx?file_no=cjcp1710184&flag=1&quarter_id=2&year_id=2018 |
| Alternate Webpage(s) | https://doi.org/10.1063/1674-0068%2F31%2Fcjcp1710184 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |