Loading...
Please wait, while we are loading the content...
Similar Documents
Étude numérique et asymptotique d'une approche couplée pour la simulation de la propagation de feux de forêt avec l'effet du vent en terrain complexe
| Content Provider | Semantic Scholar |
|---|---|
| Author | Proulx, Louis-Xavier |
| Copyright Year | 2018 |
| Abstract | This paper presents a new regularization method for a singular source given by a delta function supported on a codimension-2 manifold. This method was developed for the case of an elliptic problem to be solved with a Cartesian grid method where the delta function is regularized at the bottom boundary of an irregular domain. The moment conditions previously established for codimension-1 manifolds are generalized for the codimension-2 case. The regularization combined with a rescaling process guarantees the delta function approximation fulfills the first moment condition, needed to recover convergence on such an irregular grid. Numerical experiments in 2D and 3D indicate that this condition is sufficient for the convergence of the solutions as the mesh size goes to zero. |
| File Format | PDF HTM / HTML |
| Alternate Webpage(s) | https://papyrus.bib.umontreal.ca/xmlui/bitstream/handle/1866/20586/Proulx_Louis-Xavier_2016_these.pdf?isAllowed=y&sequence=2 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |