Loading...
Please wait, while we are loading the content...
Similar Documents
Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide
| Content Provider | Semantic Scholar |
|---|---|
| Author | Li, Guangshe Fu, Chaochao Luo, Dong Bao Fan, Jianming Xie, Dongjiu Li, Liping |
| Copyright Year | 2015 |
| Abstract | Lithium batteries for UPS, portable electronics and electrical vehicles rely on high-energy cathodes. Li-rich manganese-rich oxide (xLi2MnO3·(1 − x)LiMO2, M = transition metals) is one of the few materials that might meet such a requirement, but it suffers from poor energy retention due to serious voltage and/or capacity fade, which challenges its applications. Here we show that this challenge can be addressed by optimizing the interactions between the components Li2MnO3 and LiMO2 in the Li-rich oxide (i.e. stabilizing the layered structure through Li2MnO3 and controlling Li2MnO3 activation through LiMO2). To realize this synergistic effect, a novel Li2MnO3-stabilized Li1.080Mn0.503Ni0.387Co0.030O2 was designed and prepared using a hierarchical carbonate precursor obtained by a solvo/hydro-thermal method. This layered oxide is demonstrated to have a high working voltage of 3.9 V and large specific energy of 805 W h kg−1 at 29 °C as well as impressive energy retention of 92% over 100 cycles. Even when exposed to 55 °C, energy retention is still as high as 85% at 200 mA g−1. The attractive performance is most likely the consequence of the balanced stability and specific energy in the present material, which is promisingly applicable to other Li-rich oxide systems. This work sheds light on harnessing Li2MnO3 activation and furthermore efficient battery design simply through compositional tuning and temperature regulation. |
| Starting Page | 10592 |
| Ending Page | 10602 |
| Page Count | 11 |
| File Format | PDF HTM / HTML |
| DOI | 10.1039/C5TA00929D |
| Alternate Webpage(s) | http://www.rsc.org/suppdata/c5/ta/c5ta00929d/c5ta00929d1.pdf |
| Alternate Webpage(s) | https://doi.org/10.1039/C5TA00929D |
| Volume Number | 3 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |