Loading...
Please wait, while we are loading the content...
Algebraic and combinatorial codimension – 1 transversality
| Content Provider | Semantic Scholar |
|---|---|
| Author | Ranicki, Andrew |
| Copyright Year | 2003 |
| Abstract | The Waldhausen construction of Mayer–Vietoris splittings of chain complexes over an injective generalized free product of group rings is extended to a combinatorial construction of Seifert–van Kampen splittings of CW complexes with fundamental group an injective generalized free product. AMS Classification 57R67; 19J25 |
| File Format | PDF HTM / HTML |
| Alternate Webpage(s) | http://arxiv.org/pdf/math/0308111v1.pdf |
| Alternate Webpage(s) | http://arxiv.org/pdf/math/0308111v2.pdf |
| Alternate Webpage(s) | http://emis.maths.tcd.ie/EMIS/journals/UW/gt/ftp/main/m7/m7l6.pdf |
| Alternate Webpage(s) | http://emis.maths.tcd.ie/EMIS/journals/UW/gt/ftp/main/m7/m7-6.pdf |
| Alternate Webpage(s) | http://www.maths.ed.ac.uk/~aar/papers/trans.pdf |
| Alternate Webpage(s) | http://arxiv.org/pdf/math/0308111v3.pdf |
| Alternate Webpage(s) | https://www.era.lib.ed.ac.uk/bitstream/handle/1842/235/0308111.pdf?isAllowed=y&sequence=1 |
| Language | English |
| Access Restriction | Open |
| Subject Keyword | ABLEPHARON-MACROSTOMIA SYNDROME Ring device Transversality (mathematics) |
| Content Type | Text |
| Resource Type | Article |