Loading...
Please wait, while we are loading the content...
Représentations irréductibles bornées des groupes de Lie exponentiels
| Content Provider | Semantic Scholar |
|---|---|
| Author | Ludwig, Jean Pierre Molitor-Braun, Carine |
| Copyright Year | 2001 |
| Abstract | Let G be a solvable exponential Lie group. We characterize all the continuous topologically irreducible bounded representations (T,U) of G on a Banach space U by giving a G-orbit in n∗ (n being the nilradical of g), a topologically irreducible representation of L1(Rn, ω), for a certain weight ω and a certain n ∈ N, and a topologically simple extension norm. If G is not symmetric, i.e., if the weight ω is exponential, we get a new type of representations which are fundamentally different from the induced representations. Recu par les editeurs 12 novembre, 1999. Etude effectuee dans le cadre du projet de recherche MEN/CUL/98/007. Classification (AMS) par sujet: 43A20. Mots cles: groupe de Lie resoluble exponentiel, representation bornee topologiquement irreductible, orbite, norme d’extension, sous-espace invariant, ideal premier, ideal primitif. c ©Societe Mathematique du Canada 2001. 944 |
| Starting Page | 944 |
| Ending Page | 978 |
| Page Count | 35 |
| File Format | PDF HTM / HTML |
| DOI | 10.4153/cjm-2001-038-0 |
| Volume Number | 53 |
| Alternate Webpage(s) | https://cms.math.ca/cjm/abstract/pdf/149337.pdf |
| Alternate Webpage(s) | https://doi.org/10.4153/cjm-2001-038-0 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |