Loading...
Please wait, while we are loading the content...
Similar Documents
Commutators of trace zero matrices over principal ideal rings
| Content Provider | Semantic Scholar |
|---|---|
| Author | Stasinski, Alexander |
| Copyright Year | 2016 |
| Abstract | We prove that for every trace zero square matrix A of size at least 3 over a principal ideal ring R, there exist trace zero matrices X, Y over R such that XY − YX = A. Moreover, we show that X can be taken to be regular mod every maximal ideal of R. This strengthens our earlier result that A is a commutator of two matrices (not necessarily of trace zero), and in addition, the present proof is simpler than the earlier one. |
| Starting Page | 211 |
| Ending Page | 227 |
| Page Count | 17 |
| File Format | PDF HTM / HTML |
| DOI | 10.1007/s11856-018-1762-5 |
| Alternate Webpage(s) | https://arxiv.org/pdf/1607.07205v2.pdf |
| Alternate Webpage(s) | https://doi.org/10.1007/s11856-018-1762-5 |
| Volume Number | 228 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |