Loading...
Please wait, while we are loading the content...
Similar Documents
Functionalization and Application of Ion Track-Etched Nanochannels in Polymer Membranes
| Content Provider | Semantic Scholar |
|---|---|
| Author | Ali, Mubarak |
| Copyright Year | 2009 |
| Abstract | Nanochannels fabricated in ion-tracked polymer membranes have a great range of applications in biotechnology, where they are suitable for sensing biomolecules, and act as stimuli-responsive devices and molecular filters of high selectivity. For all these applications, it is highly desirable to control the channel-surface properties, i.e. to functionalize the surface in order to match specific requirements concerning hydrophobicity, selectivity, and interaction with molecules passing through the channel. In ion-tracked polymer membranes, single conical nanochannels were fabricated by selective chemical etching of the damage trails caused by the ions along their trajectories, resulting in the generation of carboxylate groups on the channel surface. These groups were functionalized with molecules having variable polarity and chemical groups that act as binding sites for different analytes. As is well-known, the negatively or positively charged conical nanochannels selectively transport cations or anions, respectively. This rectifies ionic current flowing through the channel. The success of functionalization procedure was examined and proven by measuring the asymmetric current-voltage (I-V) curves and permselectivity of the channel. The functionalized single conical nanochannels were successfully used for the electrochemical interaction of bovine serum albumin. The work presented here also includes the fabrication and characterization, both experimentally and theoretically of a single amphoteric nanochannel, functionalized with lysine and histidine chains, whose positive and negative charges are very sensitive to external pH. This nanofluidic diode with amphoteric chains attached to the channel surface allows for a broad set of rectification properties supported by a single nanodevice. A new facile approach was also introduced to incorporate biosensing elements into nanochannels by using electrostatic self-assembly of bifunctional macromolecular ligands which were used for the biospecific recognition of protein analytes. This approach also enables the creation of supramolecular multilayered structures inside the nanochannels that are stabilized by strong ligand-receptor interactions. The integration of “smart” polymer brushes, constituted of zwitterionic monomers in polyimide conical nanochannels, to obtain a new highly functional signal-responsive chemical nanodevice, has been reported for the first time. This strategy enables a higher degree of control over rectification properties, when compared with charged monolayer assemblies. Moreover, nanochannels were also functionalized with poly-N-isopropylacrylamide and poly(4-vinyl pyridine) brushes to display temperature and pH controlled gating properties, respectively. |
| File Format | PDF HTM / HTML |
| Alternate Webpage(s) | http://tuprints.ulb.tu-darmstadt.de/1952/1/Functionalization_and_Application_of_Ion_Track-Etched_Nano%E2%80%A6.pdf |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |