Loading...
Please wait, while we are loading the content...
Similar Documents
Ferroelectric property of an epitaxial lead zirconate titanate thin film deposited by a hydrothermal method
| Content Provider | Semantic Scholar |
|---|---|
| Author | Morita, Takeshi Wagatsuma, Yasuo Cho, Yasuo Morioka, Hitoshi Funakubo, Hiroshi Nava, Setter |
| Copyright Year | 2003 |
| Abstract | Deposition of thin films via hydrothermal method has various advantages: low deposition temperature, high purity, deposition on a three-dimensional structure, and a large thickness. Although an epitaxial lead zirconate titanate (PZT) thin-film deposition has been reported, the ferroelectric measurement has not been conducted due to the peel-off morphology of the film. The current paper investigates the improvement of an epitaxial PZT thin film deposited via a hydrothermal method. By adjusting the position at which the substrate was suspended in the solution, smooth morphology surface was successfully obtained. As a bottom electrode, a 200-nm SrRuO3 thin film was deposited on SrTiO3 single crystals, and the PZT thin film was deposited on SrRuO3. The remanent polarization 2Pr and coercive electric field for PZT on SrRuO3/SrTiO3 (001) were 17.1 C/cm 2 and 36 kV/cm, respectively, and those of PZT on SrRuO3/SrTiO3 (111) were 32.7 C/cm 2 and 59 kV/cm, respectively. The reason for large imprint electrical field, 91 kV/cm and 40 kV/cm for each film, was unclear at this stage, although it is associated with self–alignment poling direction. This self–alignment poling direction was confirmed via scanning nonlinear dielectric microscopy and is thought to have been related to the deposition mechanisms. |
| File Format | PDF HTM / HTML |
| DOI | 10.1557/PROC-784-C11.31 |
| Alternate Webpage(s) | http://www.ems.k.u-tokyo.ac.jp/morita/Papers/22_PZT_MRS2004.pdf |
| Alternate Webpage(s) | https://doi.org/10.1557/PROC-784-C11.31 |
| Volume Number | 784 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |