Loading...
Please wait, while we are loading the content...
Similar Documents
Measurements of Material Properties Using Differential Capacitive Strain Sensors
| Content Provider | Semantic Scholar |
|---|---|
| Author | Chu, Larry Que, Long Gianchandani, Yogesh B. |
| Copyright Year | 2001 |
| Abstract | This paper describes a laterally deflecting micromachined device that offers high sensitivity and wide dynamic range to electronically monitor the thermal expansion coefficient, tensile and compressive residual strain and Young’s modulus of microstructural materials, as well as the temperature dependence of these properties. The device uses sidewall capacitance between interdigitated tines to sense displacement caused by the release of residual stress in bent-beam suspension. Electrostatic force is used to obtain load-deflection profiles. The suspensions and tines are arranged such that output is a differential readout, immune to common mode parasitic capacitance. Analytical and numerical modeling results are presented and the device concept is verified by three different fabrication approaches using polysilicon and nickel as structural materials. Measured values of residual strain, thermal expansion and Young’s modulus are very consistent with measurements taken by other approaches and those reported previously. For example, the residual strain in certain electrodeposited Ni structures was tracked from 68.5 microstrain at 23C to 420 microstrain at 130 C, providing an expansion coefficient of 8.2 ppm/K; the best fit Young’s modulus provided by the device was 115 GPa. [737] |
| File Format | PDF HTM / HTML |
| Alternate Webpage(s) | http://web.eecs.umich.edu/~yogesh/pdfs/journalpublications/JMEMS_capstrainsensor_10_02.pdf |
| Language | English |
| Access Restriction | Open |
| Subject Keyword | Coefficient Curve fitting Displacement mapping Dynamic Range Electric Capacitance Modulus robot Numerical analysis Parasites Psychologic Displacement Residual stress Suspensions nickel part per million (ppm) sensor (device) tines |
| Content Type | Text |
| Resource Type | Article |