Loading...
Please wait, while we are loading the content...
Biofouling Mitigation in Forward Osmosis Using Graphene Oxide Functionalized Thin-Film Composite Membranes.
| Content Provider | Semantic Scholar |
|---|---|
| Author | Perreault, François Jaramillo, H. Christian Xie, Ming Ude, Mercy Nghiem, Long D. Elimelech, Menachem |
| Copyright Year | 2016 |
| Abstract | Forward osmosis (FO) is an emerging membrane process with potential applications in the treatment of highly fouling feedwaters. However, biofouling, the adhesion of microorganisms to the membrane and the subsequent formation of biofilms, remains a major limitation since antifouling membrane modifications offer limited protection against biofouling. In this study, we evaluated the use of graphene oxide (GO) for biofouling mitigation in FO. GO functionalization of thin-film composite membranes (GO-TFC) increased the surface hydrophilicity and imparted antimicrobial activity to the membrane without altering its transport properties. After 1 h of contact time, deposition and viability of Pseudomonas aeruginosa cells on GO-TFC were reduced by 36% and 30%, respectively, compared to pristine membranes. When GO-TFC membranes were tested for treatment of an artificial secondary wastewater supplemented with P. aeruginosa, membrane biofouling was reduced by 50% after 24 h of operation. This biofouling resistance is attributed to the reduced accumulation of microbial biomass on GO-TFC compared to pristine membranes. In addition, confocal microscopy demonstrated that cells deposited on the membrane surface are inactivated, resulting in a layer of dead cells on GO-TFC that limit biofilm formation. These findings highlight the potential of GO to be used for biofouling mitigation in FO. |
| File Format | PDF HTM / HTML |
| DOI | 10.1021/acs.est.5b06364 |
| Alternate Webpage(s) | https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1248&context=eispapers1 |
| Alternate Webpage(s) | https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1248&context=eispapers1&httpsredir=1&referer= |
| PubMed reference number | 27160324 |
| Alternate Webpage(s) | https://doi.org/10.1021/acs.est.5b06364 |
| Journal | Medline |
| Volume Number | 50 |
| Issue Number | 11 |
| Journal | Environmental science & technology |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |