Loading...
Please wait, while we are loading the content...
Similar Documents
The semiclassical Maupertuis-Jacobi correspondence for quasi-periodic Hamiltonian flows: stable and unstable spectra
| Content Provider | Semantic Scholar |
|---|---|
| Author | Dobrokhotov, Sergey Rouleux, Michel |
| Copyright Year | 2013 |
| Abstract | We investigate semi-classical properties of Maupertuis-Jacobi correspondence in 2-D for families of Hamiltonians $(H_\lambda(x,\xi), {\cal H}_\lambda(x,\xi))$, when ${\cal H}_\lambda(x,\xi)$ is the perturbation of completely integrable Hamiltonian $\widetilde{\cal H}$ veriying some isoenergetic non-degeneracy conditions. Assuming the Weyl $h$-PDO $H^w_\lambda$ has only discrete spectrum near $E$, and the energy surface $\{\widetilde{\cal H}={\cal E}\}$ is separated by some pairwise disjoint lagrangian tori, we show that most of eigenvalues for $\hat H_\lambda$ near $E$ are asymptotically degenerate as $h\to0$. This applies in particular for the determination of trapped modes by an island, in the linear theory of water-waves. We also consider quasi-modes localized near rational tori. Finally, we discuss breaking of Maupertuis-Jacobi correspondence on the equator of Katok sphere. |
| File Format | PDF HTM / HTML |
| Alternate Webpage(s) | https://arxiv.org/pdf/1305.3785v1.pdf |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |